图像评估指标:PSNR

公式:
在这里插入图片描述
M S E MSE MSE:模型的输出图像与真实图像之间的均方误差
M A X MAX MAX n n n位RGB图像所能取到的最大值(例如 n n n = = = 8 8 8,此时 M A X MAX MAX = = = 2 2 2 8 ^{8} 8 − - 1 1 1 = = = 255 255 255
意义(重点,面试常考):峰值信号的能量与噪声的平均能量之比
代码实现:

def psnr(pred, gt):
    pred = pred.clamp(0, 1).cpu().numpy()
    gt = gt.clamp(0, 1).cpu().numpy()
    imdff = pred - gt
    rmse = math.sqrt(np.mean(imdff ** 2))
    if rmse == 0:
        return 100
    return 20 * math.log10(1.0 / rmse)

题外话:PSNR越高图像质量真的越好吗?其实不一定,之前有些工作也已经证明了PSNR越高图像质量不一定好。问题在于PSNR与MSE成反比例关系,而MSE作为损失函数,最小化MSE的同时会造成生成图像模糊,生成图像会丢失很多细节信息(故在图像超分领域很多科研工作者引入生成式对抗网络方法)。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值