【2016-2017NEERC- gym101142-I. Integral Polygons】计算几何+计数

Integral Polygons

题目链接:

https://codeforc.es/gym/101142

Description

在这里插入图片描述

Input

在这里插入图片描述

Output

在这里插入图片描述

Sample Input

5
7 3
3 5
1 4
2 1
5 0

Sample Output

3

题意

给你一个凸多边形,现在要在某两个点之间画一条线段把凸多边形分成两部分。

问有多少种方案使得分成的两部分面积都是整数。

题解

首先如果用叉积的方法求面积,可以看出面积只有整数和.5两种形式,如果我们在计算的时候整体*2,那么面积只有奇数偶数两种。

我们现在问题就变为对于一个点来说,和之前的点连边形成的面积是偶数的方案数。

如果设 p r e [ i ] pre[i] pre[i]为从1开始进行叉积到i的和,设 m u l ( i , j ) mul(i,j) mul(i,j)为两个点的叉积值。

那么对于某个点j来说,他可以和某个点i连边的条件是从i叉积到j加上 m u l ( i , j ) mul(i,j) mul(i,j)的值为偶数。

也就是 p r e [ i ] pre[i] pre[i] ^ p r e [ j ] pre[j] pre[j] ^ m u l [ i ] [ j ] mul[i][j] mul[i][j].而 m u l [ i ] [ j ] mul[i][j] mul[i][j]的结果只和i,j坐标的奇偶性有关。

所以我们只要用一个数组 c n t [ i ] [ j ] [ k ] cnt[i][j][k] cnt[i][j][k]记录前缀叉积奇偶性为i,横坐标奇偶性为j,纵坐标奇偶性为k的点的个数。

之后每个点暴力枚举横纵坐标奇偶性进行转移即可。

代码

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<vector>
#include<math.h>
using namespace std;
typedef long long ll;
#define dbg(x) cout<<#x<<" = "<<x<<endl
#define dbg2(x,x2) cout<<#x<<" = "<<x<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x,x2,x3) cout<<#x<<" = "<<x<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
const int maxn =2e5+10;
const int INF = 0x3f3f3f3f;
int x[maxn],y[maxn];
int res[2][2][2];
int main()
{
    freopen("integral.in","r",stdin);
    freopen("integral.out","w",stdout);
    int n;scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%d%d",&x[i],&y[i]);
        x[i]%=2;if(x[i]<0) x[i]+=2;
        y[i]%=2;if(y[i]<0) y[i]+=2;
    }
    ll ans=0;
    x[0]=x[n],y[0]=y[n];
    for(int i=1;i<=n;i++)
    {
        ans=(ans+((x[i-1]*y[i]-x[i]*y[i-1]%2+2)%2))%2;
    }
    if(ans&1) return 0*puts("0");
    int sum=0;
    ans=0;
    for(int i=1;i<=n;i++)
    {
        sum=(sum+((x[i-1]*y[i]+x[i]*y[i-1]+2)%2))%2;
        for(int j=0;j<2;j++)
        {
            for(int k=0;k<2;k++)
            {
                int tmp=(j*y[i]+x[i]*k+2)%2;
                ans=ans+res[j][k][sum^tmp];
            }
        }
        res[x[i]][y[i]][sum]++;
    }
    printf("%lld\n",ans-n);
    return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值