D. Cutting Out
题意
给你一个长度为n序列,现在要你选出一个长度为k的子序列,
每次在原序列中拿出这个子序列,使可以拿的次数最多,输出这个子序列
1
<
=
k
<
=
n
<
=
2
∗
1
0
5
1<=k<=n<=2*10^5
1<=k<=n<=2∗105
做法
看到这个数据范围我们首先就应该想到是不是可以二分
发现次数是具有二分性质的(也就是能拿n次的序列一定能拿n-1次)
于是我们二分这个最终次数,
这样每个数字在选出的子序列中最多可以出现几次也就可以计算出来
然后看所有数字在选出的子序列中可以出现的总次数是否大于k进行check
坑点
注意输出的时候最后一种数字不需要全输出,凑够k个数字就可以。
代码
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 2e5+5;
int a[maxn];
int num[maxn];
struct data
{
int num;
int id;
}x[maxn];
int n,k;
bool cmp(const data &a,const data &b)
{
return a.num>b.num;
}
bool check(int mid)
{
int ans=0;
for(int i=1;i<=k;i++)
{
ans+=x[i].num/mid;//得到每种数字可以在最终序列的出现次数
if(ans>=k) return true;
}
return false;
}
void print(int mid)
{
int ans=0;
for(int i=1;i<=k;i++)
{
if(ans+x[i].num/mid>=k)//注意这里,只要凑够k个数字即可
{
for(int j=1;j<=k-ans;j++) printf("%d ",x[i].id);
return ;
}
else
{
ans+=x[i].num/mid;
for(int j=1;j<=x[i].num/mid;j++) printf("%d ",x[i].id);
}
}
return ;
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) num[a[i]]++;
for(int i=1;i<=200000;i++)
{
x[i].id=i;
x[i].num=num[i];
}
sort(x+1,x+1+200000,cmp);
int l=1,r=200000,mid;//二分最终答案的次数
while(l<=r)
{
mid=(l+r)>>1;
if(check(mid)) l=mid+1;
else r=mid-1;
}
print(r);
return 0;
}