第一章 统计量与抽样分布
1.1 基本概念
1.1.1 总体和样本
- 总体:研究对象的群体元素组成的集合;
- 样本:为了解总体的分布规律或某些特征,需对总体进行抽样观察,随机抽取一定数量的个体。
- 代表性:每个个体与总体具有相同的分布;
- 独立性:样本之间是相互独立的随机变量。
- 满足以上两条性质的样本称为简单随机样本。
1.1.2 统计量和样本矩
- 统计量:
- X1 为总体的一个样本,若 f ( X 1 ) f(X_1) f(X1)为一个函数,且 f 中不含任何未知参数,则称 f 为一个统计量;
- 样本矩:一个常用的统计量
1.1.3 经验分布函数
- 根据样本来估计和推断总体 X 的分布函数;
- v n ( x ) v_n(x) vn(x)被称为经验频数,在 n 次重复试验下,某事件出现的次数服从二项分布,故有 v n ( x ) v_n(x) vn(x)服从二项分布。
1.2 充分统计量与完备统计量
1.2.1 充分统计量
- 定义
1.2.2 因子分解定理
1.2.3 完备统计量
1.2.3 完备统计量
1.2.4 指数型分布族
- 包含常用分布,如泊松分布、正态分布、指数分布、二项分布、 Γ \Gamma Γ分布等。
1.3 抽样分布
统计量的概率分布
- 均值、方差等重要的统计量。
1.3.1 χ 2 \chi^2 χ2 分布
-
定义:
- 如 果 X 1 , X 2 , ⋅ ⋅ ⋅ , X 3 相 互 独 立 且 服 从 于 标 准 正 态 分 布 , 则 称 随 机 变 量 χ n 2 = X 1 2 + X 2 2 + ⋅ ⋅ ⋅ + X n 2 为 服 从 自 由 度 为 n 的 χ 2 分 布 , 记 为 χ n 2 χ 2 ( n ) , 其 中 n 表 示 自 由 度 , 独 立 变 量 的 个 数 。 如果X_1,X_2,···,X_3相互独立且服从于标准正态分布,则称随机变量 \\ \chi^2_n=X_1^2+X_2^2+···+X_n^2 \\为服从自由度为n的\chi^2分布,记为\chi_n^2~\chi^2(n),其中n表示自由度,独立变量的个数。 如果X1,X2,⋅⋅⋅,X3相互独立且服从于标准正态分布,则称随机变量χn2=X12+X22+⋅⋅⋅+Xn2为服从自由度为n的χ2分布,记为χn2 χ2(n),其中n表示自由度,独立变量的个数。
-
分布密度
-
-
性质:
- E χ n 2 = n , D χ n 2 = 2 n E\chi_n^2=n, D\chi_n^2=2n Eχn2=n,Dχn2=2n
-
若
χ
1
2
∼
χ
2
(
n
)
,
χ
2
2
∼
χ
2
(
m
)
若\chi_1^2\sim\chi^2(n),\chi_2^2\sim\chi^2(m)
若χ12∼χ2(n),χ22∼χ2(m) 且
χ
1
2
与
χ
2
2
\chi_1^2与\chi_2^2
χ12与χ22相互独立,则
χ 1 2 + χ 2 2 ∼ χ 2 ( n + m ) \chi_1^2+\chi_2^2\sim\chi^2(n+m) χ12+χ22∼χ2(n+m)
1.3.2 t 分布
- 定义:
- 分布密度:
- 性质:
1.3.3 F 分布
- 定义:
- 分布密度:
- 性质:
1.3.4 概率分布的分位数
- 上侧分位数:p22
- 几个不同分布的上侧分位数。
1.3.5 正态总体样本均值和方差的分布
-
χ 2 \chi^2 χ2分布
-
t 分布
- F 分布
1.3.6 一些非正态总体样本均值的分布
- 二项分布
- 泊松分布
- 指数分布
1.4 次序统计量及其分布
1.4.1 次序统计量
- 从小到大排序的统计量
1.4.2 样本中位数和样本极差
- 样本中位数:
- 样本极差:最大-最小