第七章 异方差
7.1 异方差的后果
在存在异方差的情况下:
- OLS估计量依然是无偏的、一致且渐近正态;
- OLS估计量方差改变,因此使用普通标准误的t检验、F检验失效;
- 高斯-马尔可夫定理不再成立OLS不再是最佳线性无偏估计。
大样本OLS理论是否已经假设了同方差?需要区分无条件方差与条件方差。
7.2 异方差的例子
7.3 异方差的检验
-
画残差图
最直观的方法,但是不严格
-
BP检验
使用LM统计量进行LM检验
B和P最初检验假设扰动项服从正态分布,后来K将此减弱为独立同分布。
-
怀特检验
BP检验的假设条件方差函数为线性函数,忽略了高次项。
然后,对原假设H_0(x系数都为0)进行F检验或者LM检验。
- 优点:可以检验任何形式的异方差
- 缺点:如果解释变量较多,则解释变量的二次项将更多,在辅助回归中将损失较多的样本容量。
7.4 异方差的处理
-
使用“OLS + 稳健标准误”
-
加权最小二乘法