数据分析与挖掘3——特征工程


数据和特征决定了机器学习得上限,而模型和算法只是逼近这个上线

1.数据预处理

  1. 数据采集
  2. 数据清洗:去除脏数据
  3. 数据采样:数据存在不平衡得情况下使用,有上采样和下采样之分;正样本>负样本,且数据量大,采用下采样;正样本>负样本,数据量不大,采用上采样;或者修改损失函数设置样本权重

2. 特征处理

  1. 标准化:使得经过处理后的数据符合标准的正态分布。
#标准化
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
data=ss.fit_transform(data)
  1. 归一化:将样本的特征值转换到同一量纲下,消除特征之间不同量纲的影响,区间缩放是归一化的一种。
from sklearn.preprocessing import Normalizer
sn=Normalizer()
data_normalizer=sn.fit_transform(data)
#比较适用于数据较集中的情况

两者区别:

  • 归一化容易受极端最大值和最小值的影响,比较适用于数值比较集中的情况;
  • 数据中如果存在异常值和较多的噪声,使用标准化;
  • SVM、KNN、PCA等模型必须进行标准化或归一化;
  • 两者都可以消除量纲的影响;
  • 提高梯度下降法求解最优解的速度;
  1. 定量数据二值化:将数值型数据通过设置阈值的方式进行二值化
from sklearn.preprocessing import Binarizer
b=Binarizer(threshold=3)#设置阈值,大于阈值的设为1,小于阈值的设为0
b.fit_transform(data)

运行结果:
在这里插入图片描述

  1. 定性数据哑编码:将类别型数据转换为数值型数据,如:OneHotEncoder
from sklearn.preprocessing import OneHotEncoder
oh=OneHotEncoder()
oh.fit_transform(target.reshape((-1,1)))

运行结果:
在这里插入图片描述
7. 缺失值处理
数据分析与挖掘2——数据预处理
8. 数据转换

3.特征降维

3.1. 特征选择

在这里插入图片描述

方差选择特征:计算各个特征的方差,通过设置方差的阈值训责特征

data_train_columns=[col for col in data_train.columns if col not in ['target']]
# 方差筛选特征,设置方差阈值为1
from sklearn.feature_selection import VarianceThreshold
vt=VarianceThreshold(threshold=1)
data_vt=vt.fit_transform(data_train[data_train_columns])
data_vt=pd.DataFrame(data_vt)

相关系数: 计算各个特征对目标值的相关系数(皮尔逊相关系数)

#相关系数法筛选特征,选择特征个数
from sklearn.feature_selection import SelectKBest
from scipy.stats import pearsonr
skb=SelectKBest(lambda X,Y:np.array(list(map(lambda x:pearsonr(x,Y),X.T))).T[0],k=10)
data_skb=skb.fit_transform(data_train[data_train_columns],data_train['target'])

卡方检验:计算类别型特征和类别型target之间的相关性.卡方检验

from sklearn.feature_selection import chi2
SelectKBest(chi2,k=2).fit_transform(x,y)

最大信息系数法:计算类别型特征和类别型target之间的相关性

from minepy import MINE
def mic(x,y):
	m=MINE()
	m.compute_score(x,y)
	return (m.mic(),0.5)
SelectKBest(lambda X,Y:np.array(list(map(lambda x:mic(x,Y),X.T))).T[0],k=10).fit_transform(train_data,train_target)

递归消除特征法:RFE 算法通过增加或移除特定特征变量获得能最大化模型性能的最优组合变量。

#RFE递归消除法
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
rfe=RFE(estimator=LogisticRegression(multi_class='auto',
                                    solver='lbfgs',
                    				max_iter=500),n_features_to_select=10)
#estimator为基模型,为逻辑回归模型,用于分类
#solver:几种优化方法。小数据集中,liblinear是一个好选择,sag和saga对大数据集更快;多类别问题中,除了liblinear其它四种算法都可以使用;newton-cg,lbfgs和sag仅能使用L2惩罚项,liblinear和saga使用L1惩罚项。
#max_iter:int类型,默认为‘100’,仅适用于newton-cg, sag和lbfgs算法;表示算法收敛的最大次数。
#n_features_to_select=10为选择的特征的个数
data_rfe=rfe.fit_transform(data_train[data_train_columns],data_train['target'])#data_train['target']为类别型标签

基于模型的特征选择

  1. 基于惩罚项的特征选择
#基于惩罚项的特征选择算法
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LogisticRegression
sfm=SelectFromModel(LogisticRegression(penalty='l2',C=0.1,solver='lbfgs',multi_class='auto'))
#solver为优化算法,lbfgs优化算法仅支持l2;penalty为惩罚项,惩罚项是用来添加参数避免过拟合,可以理解为对当前训练样本的惩罚,用以提高函数的泛化能力;C为正则化系数的倒数,值越小,表示越强的正则化
data_sfm=sfm.fit_transform(data,target)
data_sfm=pd.DataFrame(data_sfm)
data_sfm
  1. 基于树模型的特征选择算法
#基于树模型的特征选择
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import GradientBoostingClassifier
sfmGBDT=SelectFromModel(GradientBoostingClassifier())
data_sfmGBDT=sfmGBDT.fit_transform(data,target)
data_sfm=pd.DataFrame(data_sfm)
data_sfm

3.2 线性降维

  1. 主成分分析PCA:利用某种线性投影,将高维数据投影到低维空间,并期望在所投影的维度上数据的方差最大,使得使用较少的数据维度保留较多的原始信息。
    在这里插入图片描述
#PCA进行特征降维
from sklearn.decomposition import PCA
pca=PCA(n_components=10)#n_components为主成分数目
data_pca=pca.fit_transform(data_train[data_train_columns])
data_pca=pd.DataFrame(data_pca)
data_pca
  1. 线性判别分析法LDA:LDA的思想是利用标签的信息,将数据投影到低维空间之后,使得同一类数据尽可能的紧凑,不同类的数据尽可能分散。因此,LDA算法是一种有监督的机器学习算法。
    在这里插入图片描述
#LDA线性降维选择特征(应用于分类)
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
lda=LDA(n_components=2)#特征降维后的维数
data_lda=lda.fit_transform(data,target)
data_lda=pd.DataFrame(data_lda)
data_lda

参考:LDAPCA过拟合问题的解决1过拟合理解2

补充说明:
LASSO回归、RIGDE回归是在线性回归的基础上添加L1、L2正则化项;

首先考虑线性回归模型的损失函数,以平方误差为损失函数,优化目标为: min ⁡ w ∑ i = 1 m ( y i − w T x i ) 2 \min _{w} \sum_{i=1}^{m}\left(y_{i}-w^{\mathrm{T}} \boldsymbol{x}_{i}\right)^{2} wmini=1m(yiwTxi)2
当样本的特征较多,但是样本数较少时,为防止过拟合引入正则化项,若使用L1正则化项,则为LASSO回归: min ⁡ w ∑ i = 1 m ( y i − w T x i ) 2 + λ ∥ w ∥ 1 \min _{\boldsymbol{w}} \sum_{i=1}^{m}\left(y_{i}-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{i}\right)^{2}+\lambda\|w\|_{1} wmini=1m(yiwTxi)2+λw1
若使用L2正则化项,则为RIDGE回归: min ⁡ w ∑ i = 1 m ( y i − w T x i ) 2 + λ ∥ w ∥ 2 2 \min _{\boldsymbol{w}} \sum_{i=1}^{m}\left(y_{i}-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{i}\right)^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} wmini=1m(yiwTxi)2+λw22
其中, λ > 0 \lambda>0 λ>0为正则化系数。
∥ w ∥ 1 = ∣ w 1 ∣ + ∣ w 2 ∣ + ∣ w 3 ∣ + ⋯ + ∣ w n ∣ \|w\|_{1}=\left|w_{1}\right|+\left|w_{2}\right|+\left|w_{3}\right|+\cdots+\left|w_{n}\right| w1=w1+w2+w3++wn
∥ w ∥ 2 = ( ∣ w 1 ∣ 2 + ∣ w 2 ∣ 2 + ∣ w 3 ∣ 2 + ⋯ + ∣ w n ∣ 2 ) 1 / 2 \|w\|_{2}=\left(\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}+\left|w_{3}\right|^{2}+\cdots+\left|w_{n}\right|^{2}\right)^{1 / 2} w2=(w12+w22+w32++wn2)1/2
假设 x x x仅有两个特征,所以 w w w也只有两个分量 w 1 , w 2 w_1,w_2 w1,w2,所以上式变换为 ∥ w ∥ 1 = ∣ w 1 ∣ + ∣ w 2 ∣ \|w\|_{1}=\left|w_{1}\right|+\left|w_{2}\right| w1=w1+w2
∥ w ∥ 2 = ( ∣ w 1 ∣ 2 + ∣ w 2 ∣ 2 ) 1 / 2 \|w\|_{2}=\left(\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}\right)^{1 / 2} w2=(w12+w22)1/2
绘图为
在这里插入图片描述
平方误差项等值线为在 ( w 1 , w 2 ) (w_1,w_2) (w1,w2)空间中,第一项取值相同的点的连线。

w 1 , w 2 w_1,w_2 w1,w2的取值为在看出两者的相交处,所以L1正则化取值更容易在坐标轴上,也就是其中一个特征的系数 w w w为零,仅用了一部分特征训练了模型,也就是为什么LASSO更容易获得稀疏解。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
引用\[1\]:在过去的两个月里,Databricks公司举办了一场会议,将数据团队聚集在一起,共召开220多个会议,有无数机会与同行交流——超过50,000名数据科学家、数据工程师、分析师、商业领袖和其他数据专业人士。 Spark + AI 峰会虚拟环境。 引用\[2\]:本书以数据智能为灵魂,以Spark 2.4.X版本为载体,以Spark+ AI商业案例实战和生产环境下几乎所有类型的性能调优为核心,对企业生产环境下的Spark+AI商业案例与性能调优抽丝剥茧地进行剖析。全书共分4篇,内核解密篇基于Spark源码,从一个实战案例入手,循序渐进地全面解析Spark 2.4.X版本的新特性及Spark内核源码;商业案例篇选取Spark开发中最具代表性的经典学习案例,在案例中综合介绍Spark的大数据技术;性能调优篇覆盖Spark在生产环境下的所有调优技术; Spark+ AI内幕解密篇讲解深度学习动手实践,通过整合Spark、PyTorch以及TensorFlow揭秘Spark上的深度学习内幕。本书适合所有大数据和人工智能学习者及从业人员使用。对于有丰富大数据和AI应用经验的人员,本书也可以作为大数据和AI高手修炼的参考用书。同时,本书也特别适合作为高等院校的大数据和人工智能教材。 问题:spark数据分析实战——奥运会 回答: Spark是一个强大的大数据处理框架,可以用于数据分析和处理。在奥运会数据分析实战中,Spark可以帮助我们处理大规模的奥运会数据,进行数据清洗、转换和分析。通过使用Spark的分布式计算能力和优化技术,我们可以高效地处理大量的奥运会数据,并从中提取有价值的信息。同时,Spark还提供了丰富的数据处理和机器学习库,可以帮助我们进行数据挖掘和建模,以便更好地理解和预测奥运会的趋势和结果。通过结合Spark和AI技术,我们可以实现更深入的奥运会数据分析,并为奥运会的组织者、运动员和观众提供更好的决策支持和用户体验。 #### 引用[.reference_title] - *1* *2* [免费参加全球最大的Spark+AI峰会(Databricks 2020年6月22-26日)!免费访问峰会主题演讲及分组会议!](https://blog.csdn.net/duan_zhihua/article/details/106729096)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [热烈祝贺王家林大咖大数据经典传奇著作《Spark大数据商业实战三部曲》 畅销书籍第二版 清华大学出版社发行...](https://blog.csdn.net/duan_zhihua/article/details/106294896)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrs.King_UP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值