【论文阅读】A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems

本文深入剖析了CICIDS2017数据集的缺陷,如数据过大、类别不平衡和冗余,重点讨论了解决数据不平衡的方法,包括子类划分和少数类合并。通过改进,提升IDS的实用性

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文对CICIDS2017数据集进行客观评价,介绍了数据集本身存在的缺陷以及解决方法。
摘要: CICIDS2017是2017年提出的,包含了当下最新的威胁种类和特征,相比于之前的数据集,没有重大的缺陷,但足以使典型的IDS产生偏差。

入侵检测系统需要与时俱进的信息才能够有效的检测到攻击,大量入侵检测系统达到98%准确率,吸引了研究者和企业投入资金和时间为用户提供有效的产品,但是这些模型很少能够被企业所使用在开发真实的IDS中。

CICIDS2017缺陷在于:

  1. 数据集过大且过于分散
    == 可以进行下采样,但是在采样之前要解决数据类别不平衡的问题才可以==
  2. 包含大量的冗余数据
  3. 数据高度不平平衡,误导分类器,训练会侧重于样本数量较多的类

在解决数据 不平衡问题上,1)将样本数量较多的类进行分割,分成几个类,或者将几个少数类合并成一个类( == 但是这样会使得样本的多样性减少 == )

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrs.King_UP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值