3.6 特征值和特征向量

1 基本概念

  • A \boldsymbol{A} A n n n 阶矩阵, λ \lambda λ 是一个数,若存在 n n n 维非零列向量 ξ ≠ 0 \xi \ne 0 ξ=0 使得 A ξ = λ ξ \boldsymbol{A\xi}=\lambda\boldsymbol{\xi} Aξ=λξ,则称 λ \lambda λ A \boldsymbol{A} A特征值 ξ \boldsymbol{\xi} ξ A \boldsymbol{A} A 对应于特征值 λ \lambda λ特征向量

  • ( λ E − A ) ξ = 0 (\lambda\boldsymbol{E}-\boldsymbol{A})\boldsymbol{\xi}=\boldsymbol{0} (λEA)ξ=0,因 ξ ≠ 0 \boldsymbol{\xi} \ne 0 ξ=0,故 A \boldsymbol{A} A特征方程(未知量为 λ \lambda λ n n n 次方程,有 n n n 个根(重根按重数计))为
    ∣ λ E − A ∣ = ∣ λ − a 11 − a 12 ⋯ − a 1 n − a 21 λ − a 22 ⋯ − a 2 n ⋮ ⋮ ⋮ − a n 1 − a n 2 ⋯ λ − a 1 n ∣ = 0 \begin{vmatrix} \lambda\boldsymbol{E}-\boldsymbol{A} \end{vmatrix} = \begin{vmatrix} \lambda-a_{11} & -a_{12} & \cdots & -a_{1n}\\ -a_{21} & \lambda-a_{22} & \cdots & -a_{2n}\\ \vdots & \vdots & & \vdots\\ -a_{n1} & -a_{n2} & \cdots & \lambda-a_{1n}\\ \end{vmatrix} =0 λEA=λa11a21an1a12λa22an2a1na2nλa1n=0

  • λ E − A \lambda\boldsymbol{E}-\boldsymbol{A} λEA 称为特征矩阵 ∣ λ E − A ∣ \begin{vmatrix} \lambda\boldsymbol{E}-\boldsymbol{A} \end{vmatrix} λEA称为特征多项式

2 特征值的性质

  • A = ( a i j ) n × n \boldsymbol{A}=(a_{ij})_{n \times n} A=(aij)n×n λ i ( i = 1 , 2 , ⋯   , n ) \lambda_i(i=1,2,\cdots,n) λi(i=1,2,,n) A \boldsymbol{A} A 的特征值,则:
    • ∑ i = 1 n λ i = ∑ i = 1 n a i i \sum\limits_{i=1}^{n}\lambda_i=\sum\limits_{i=1}^{n}a_{ii} i=1nλi=i=1naii
    • ∏ i = 1 n λ i = ∣ A ∣ \prod\limits_{i=1}^{n}\lambda_i=\begin{vmatrix} \boldsymbol{A} \end{vmatrix} i=1nλi=A
  • 应用: A \boldsymbol{A} A n n n 阶矩阵,若 r ( A ) = 1 r(\boldsymbol{A})=1 r(A)=1,则 A \boldsymbol{A} A 的特征值为: λ 1 = λ 2 = ⋯ = λ n − 1 = 0 , λ n = ∑ i = 1 n a i i \lambda_1=\lambda_2=\cdots=\lambda_{n-1}=0,\lambda_n=\sum\limits_{i=1}^{n}a_{ii} λ1=λ2==λn1=0,λn=i=1naii

3 特征向量的性质

  1. k k k 重特征值 λ \lambda λ 至多有 k k k 个线性无关的特征向量;
  2. λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2 A \boldsymbol{A} A 的两个不同的特征值,若 ξ \boldsymbol{\xi} ξ 是对应于 λ 1 \lambda_1 λ1 的特征向量,则 ξ \boldsymbol{\xi} ξ 不是 λ 2 \lambda_2 λ2 的特征向量(即一个特征向量不能属于两个不同的特征值);
  3. ξ 1 , ξ 2 \boldsymbol{\xi}_1,\boldsymbol{\xi}_2 ξ1,ξ2 A \boldsymbol{A} A 的属于不同特征值 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2 的特征向量,则 ξ 1 , ξ 2 \boldsymbol{\xi}_1,\boldsymbol{\xi}_2 ξ1,ξ2 线性无关;
  4. ξ 1 , ξ 2 \boldsymbol{\xi}_1,\boldsymbol{\xi}_2 ξ1,ξ2 A \boldsymbol{A} A 的属于相同特征值 λ \lambda λ 的特征向量,则 k 1 ξ 1 + k 2 ξ 2 k_1\boldsymbol{\xi}_1+k_2\boldsymbol{\xi}_2 k1ξ1+k2ξ2 k 1 , k 2 k_1,k_2 k1,k2 不同时为 0️⃣)仍是 A \boldsymbol{A} A 的属于特征值 λ \lambda λ 的特征向量;
  5. A \boldsymbol{A} A n n n 阶矩阵, A ξ 1 = λ 1 ξ 1 , A ξ 2 = λ 2 ξ 2 , λ 1 ≠ λ 2 , ξ 1 ≠ 0 , ξ 2 ≠ 0 \boldsymbol{A\xi_1}=\lambda_1\boldsymbol{\xi_1},\boldsymbol{A\xi_2}=\lambda_2\boldsymbol{\xi_2},\lambda_1 \ne \lambda_2,\boldsymbol{\xi}_1 \ne 0,\boldsymbol{\xi}_2 \ne 0 Aξ1=λ1ξ1,Aξ2=λ2ξ2,λ1=λ2,ξ1=0,ξ2=0,则当 k 1 ≠ 0 , k 2 ≠ 0 k_1 \ne 0,k_2 \ne 0 k1=0,k2=0 时, k 1 ξ 1 + k 2 ξ 2 k_1\boldsymbol{\xi}_1+k_2\boldsymbol{\xi}_2 k1ξ1+k2ξ2 不是 A \boldsymbol{A} A 的特征向量。

4 常用矩阵的特征值和特征向量

矩阵特征值特征向量
A \boldsymbol{A} A λ \lambda λ ξ \boldsymbol{\xi} ξ
k A k\boldsymbol{A} kA k λ k\lambda kλ ξ \boldsymbol{\xi} ξ
A k \boldsymbol{A}^k Ak λ k \lambda^k λk ξ \boldsymbol{\xi} ξ
A T \boldsymbol{A}^T AT λ \lambda λ不是 ξ \boldsymbol{\xi} ξ,需单独计算
A − 1 \boldsymbol{A}^{-1} A1 1 λ \frac{1}{\lambda} λ1 ξ \boldsymbol{\xi} ξ
A ∗ \boldsymbol{A}^* A ∣ A ∣ λ \frac{\begin{vmatrix}\boldsymbol{A}\end{vmatrix}}{\lambda} λA ξ \boldsymbol{\xi} ξ
n E + A n\boldsymbol{E}+\boldsymbol{A} nE+A n + λ n+\lambda n+λ ξ \boldsymbol{\xi} ξ
P − 1 A P \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} P1AP λ \lambda λ P − 1 ξ \boldsymbol{P}^{-1}\boldsymbol{\xi} P1ξ
f ( A ) f(\boldsymbol{A}) f(A) f ( λ ) f(\lambda) f(λ) ξ \boldsymbol{\xi} ξ
  • f ( x ) f(x) f(x) 为多项式,若矩阵 A \boldsymbol{A} A 满足 f ( A ) = 0 f(\boldsymbol{A})=\boldsymbol{0} f(A)=0 λ \lambda λ A \boldsymbol{A} A 的任一特征值,则 λ \lambda λ 满足 f ( λ ) = 0 f(\lambda)=0 f(λ)=0

5 判断两个矩阵是否具有相同的特征值

  • ∣ λ E − A ∣ = ∣ λ E − B ∣ \begin{vmatrix} \lambda\boldsymbol{E}-\boldsymbol{A} \end{vmatrix}=\begin{vmatrix} \lambda\boldsymbol{E}-\boldsymbol{B} \end{vmatrix} λEA=λEB ➡️ A , B \boldsymbol{A},\boldsymbol{B} A,B 具有相同的特征值
  • A ≅ B \boldsymbol{A} \cong \boldsymbol{B} AB,则 A , B \boldsymbol{A},\boldsymbol{B} A,B 有相同的特征值。
  • A , B \boldsymbol{A},\boldsymbol{B} A,B 是实对称矩阵,则 A B \boldsymbol{AB} AB B A \boldsymbol{BA} BA 有相同的特征值。
  • A \boldsymbol{A} A 是可逆矩阵,则 A B \boldsymbol{AB} AB B A \boldsymbol{BA} BA 有相同的特征值。

TypePageExample
求数值矩阵的特征数和特征向量1467.1 + 7.2 + 7.3
求抽象矩阵的特征数和特征向量1517.4 + 7.5 + 7.6
判断两个矩阵是否具有相同的特征值1537.7
利用特征值计算行列式1577.17 + 7.18 + 7.19
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值