【DSP数字信号处理】期末复习笔记(一)

DSP数字信号处理期末复习笔记

一、数字信号处理基础

1. 序列的表示方法

有三种基本的序列表示方法:

  1. 枚举法 (Enumeration Method)

    • 将序列的所有值列入到一个大括号之中。
    • 箭头所指的数值代表序列在 n = 0 n=0 n=0 时刻的序列值。
    • 示例: x [ n ] = { 1 , 2 , 3 ↑ , 4 , 5 } x[n] = \{1, 2, \underset{\uparrow}{3}, 4, 5\} x[n]={1,2,3,4,5} 表示 x [ 0 ] = 3 , x [ − 1 ] = 2 , x [ − 2 ] = 1 , x [ 1 ] = 4 , x [ 2 ] = 5 x[0]=3, x[-1]=2, x[-2]=1, x[1]=4, x[2]=5 x[0]=3,x[1]=2,x[2]=1,x[1]=4,x[2]=5
  2. 函数表达式法 (Functional Expression Method)

    • 通过一个函数表达式来表达序列。
    • 求解序列值时,可以通过代入 n = 0 , n = 1 , … n=0, n=1, \dots n=0,n=1, 等进行求值。
    • 示例: x [ n ] = u [ n ] − u [ n − 5 ] x[n] = u[n] - u[n-5] x[n]=u[n]u[n5],其中 u [ n ] u[n] u[n] 是单位阶跃序列。此序列表示 x [ 0 ] = 1 , x [ 1 ] = 1 , x [ 2 ] = 1 , x [ 3 ] = 1 , x [ 4 ] = 1 x[0]=1, x[1]=1, x[2]=1, x[3]=1, x[4]=1 x[0]=1,x[1]=1,x[2]=1,x[3]=1,x[4]=1,其余为0。
  3. 图形表示法 (Graphical Representation Method)

    • 将序列的所有值画在一个图形当中,横轴为 n n n,纵轴为 x [ n ] x[n] x[n]
    • 可以直观地看出序列所有值的相对大小关系。

2. 序列的基本运算

  1. 位移运算 (Shift Operation)

    • 遵循“左加右减”的原则。
    • y [ n ] = x [ n − n 0 ] y[n] = x[n-n_0] y[n]=x[nn0]
    • 如果 n 0 n_0 n0 是一个正整数,则代表序列 x [ n ] x[n] x[n] 向右移 n 0 n_0 n0 位。
    • 如果 n 0 n_0 n0 是一个负整数 (即 x [ n + k ] x[n+k] x[n+k] k > 0 k>0 k>0),则代表序列 x [ n ] x[n] x[n] 向左移 k k k 位。
  2. 反转运算 (Reversal/Folding Operation)

    • y [ n ] = x [ − n ] y[n] = x[-n] y[n]=x[n]
    • 代表序列 x [ n ] x[n] x[n] 按照 n = 0 n=0 n=0 进行反折(对称)。
  3. 幅度调整与直流偏置

    • 标长 (Scaling / Amplitude Scaling): y [ n ] = A ⋅ x [ n ] y[n] = A \cdot x[n] y[n]=Ax[n],序列的每个样本值乘以常数 A A A
    • 直流偏置 (DC Offset/Bias): y [ n ] = x [ n ] + A y[n] = x[n] + A y[n]=x[n]+A,序列的每个样本值加上常数 A A A
  4. 序列相加 (Addition of Sequences)

    • y [ n ] = x 1 [ n ] + x 2 [ n ] y[n] = x_1[n] + x_2[n] y[n]=x1[n]+x2[n]
    • 将两个序列在相同 n n n 值的样本值进行相加。

3. 卷积运算 (Convolution)

  • 特指线性卷积 (Linear Convolution)。

  • 表达式:
    y [ n ] = x [ n ] ∗ h [ n ] = ∑ k = − ∞ ∞ x [ k ] h [ n − k ] = ∑ k = − ∞ ∞ h [ k ] x [ n − k ] y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] y[n]=x[n]h[n]=k=x[k]h[nk]=k=h[k]x[nk]

  • 图解法求解步骤:

    1. 反转 (Folding): 将其中一个序列(如 h [ k ] h[k] h[k])反转得到 h [ − k ] h[-k] h[k]
    2. 位移 (Shifting): 将反转后的序列 h [ − k ] h[-k] h[k] 右移 n n n 个样本得到 h [ n − k ] h[n-k] h[nk] n n n 的取值范围决定了输出序列 y [ n ] y[n] y[n] 的范围。
      • y [ n ] y[n] y[n] 的起始点索引 = x [ n ] x[n] x[n] 的起始点索引 + h [ n ] h[n] h[n] 的起始点索引。
      • y [ n ] y[n] y[n] 的结束点索引 = x [ n ] x[n] x[n] 的结束点索引 + h [ n ] h[n] h[n] 的结束点索引。
      • x [ n ] x[n] x[n] 长度为 N 1 N_1 N1 h [ n ] h[n] h[n] 长度为 N 2 N_2 N2,则 y [ n ] y[n] y[n] 长度为 N 1 + N 2 − 1 N_1+N_2-1 N1+N21
    3. 相乘 (Multiplication): x [ k ] x[k] x[k] h [ n − k ] h[n-k] h[nk] 对应样本值相乘。
    4. 累加 (Summation): 将相乘后得到的所有样本值累加,得到 y [ n ] y[n] y[n] 在该 n n n 处的值。
  • 例:图解法求线性卷积
    假设 x [ n ] = { 1 , 2 , 3 ↑ } x[n] = \{1, 2, \underset{\uparrow}{3}\} x[n]={1,2,3} (即 x [ − 2 ] = 1 , x [ − 1 ] = 2 , x [ 0 ] = 3 x[-2]=1, x[-1]=2, x[0]=3 x[2]=1,x[1]=2,x[0]=3) 和 h [ n ] = { 1 ↑ , 1 } h[n] = \{\underset{\uparrow}{1}, 1\} h[n]={1,1} (即 h [ 0 ] = 1 , h [ 1 ] = 1 h[0]=1, h[1]=1 h[0]=1,h[1]=1)。

    x [ k ] x[k] x[k] 非零范围: k ∈ { − 2 , − 1 , 0 } k \in \{-2, -1, 0\} k{2,1,0}。起始索引 n x , s t a r t = − 2 n_{x,start}=-2 nx,start=2, 结束索引 n x , e n d = 0 n_{x,end}=0 nx,end=0。长度 N 1 = 3 N_1=3 N1=3
    h [ k ] h[k] h[k] 非零范围: k ∈ { 0 , 1 } k \in \{0, 1\} k{0,1}。起始索引 n h , s t a r t = 0 n_{h,start}=0 nh,start=0, 结束索引 n h , e n d = 1 n_{h,end}=1 nh,end=1。长度 N 2 = 2 N_2=2 N2=2

    y [ n ] y[n] y[n] 的起始索引 n y , s t a r t = n x , s t a r t + n h , s t a r t = − 2 + 0 = − 2 n_{y,start} = n_{x,start} + n_{h,start} = -2+0 = -2 ny,start=nx,start+nh,start=2+0=2
    y [ n ] y[n] y[n] 的结束索引 n y , e n d = n x , e n d + n h , e n d = 0 + 1 = 1 n_{y,end} = n_{x,end} + n_{h,end} = 0+1 = 1 ny,end=nx,end+nh,end=0+1=1
    y [ n ] y[n] y[n] 的长度 N y = N 1 + N 2 − 1 = 3 + 2 − 1 = 4 N_y = N_1+N_2-1 = 3+2-1 = 4 Ny=N1+N21=3+21=4
    所以 y [ n ] y[n] y[n] n ∈ { − 2 , − 1 , 0 , 1 } n \in \{-2, -1, 0, 1\} n{2,1,0,1} 时可能有非零值。

    1. 反转 h [ k ] h[k] h[k]: h [ − k ] h[-k] h[k] h [ 0 ] = 1 h[0]=1 h[0]=1 变为 h [ − 0 ] = 1 h[-0]=1 h[0]=1 h [ 1 ] = 1 h[1]=1 h[1]=1 变为 h [ − 1 ] = 1 h[-1]=1 h[1]=1。所以 h [ − k ] h[-k] h[k] k = 0 k=0 k=0 处为 1 1 1,在 k = − 1 k=-1 k=1 处为 1 1 1

    2. 位移、相乘、累加:

      • n = − 2 n=-2 n=2: h [ − 2 − k ] h[-2-k] h[2k]。要使 h [ − 2 − k ] h[-2-k] h[2k] 非零,则 − 2 − k = 0 ⇒ k = − 2 -2-k=0 \Rightarrow k=-2 2k=0k=2 − 2 − k = − 1 ⇒ k = − 3 -2-k=-1 \Rightarrow k=-3 2k=1k=3
        h [ − 2 − k ] h[-2-k] h[2k] k = − 2 k=-2 k=2 处为 h [ 0 ] = 1 h[0]=1 h[0]=1,在 k = − 3 k=-3 k=3 处为 h [ 1 ] = 1 h[1]=1 h[1]=1
        y [ − 2 ] = ∑ x [ k ] h [ − 2 − k ] = x [ − 2 ] h [ 0 ] = 1 × 1 = 1 y[-2] = \sum x[k]h[-2-k] = x[-2]h[0] = 1 \times 1 = 1 y[2]=x[k]h[2k]=x[2]h[0]=1×1=1。(仅 k = − 2 k=-2 k=2 处重合)

      • n = − 1 n=-1 n=1: h [ − 1 − k ] h[-1-k] h[1k]。要使 h [ − 1 − k ] h[-1-k] h[1k] 非零,则 − 1 − k = 0 ⇒ k = − 1 -1-k=0 \Rightarrow k=-1 1k=0k=1 − 1 − k = − 1 ⇒ k = − 2 -1-k=-1 \Rightarrow k=-2 1k=1k=2
        h [ − 1 − k ] h[-1-k] h[1k] k = − 1 k=-1 k=1 处为 h [ 0 ] = 1 h[0]=1 h[0]=1,在 k = − 2 k=-2 k=2 处为 h [ 1 ] = 1 h[1]=1 h[1]=1
        y [ − 1 ] = ∑ x [ k ] h [ − 1 − k ] = x [ − 1 ] h [ 0 ] + x [ − 2 ] h [ 1 ] = 2 × 1 + 1 × 1 = 3 y[-1] = \sum x[k]h[-1-k] = x[-1]h[0] + x[-2]h[1] = 2 \times 1 + 1 \times 1 = 3 y[1]=x[k]h[1k]=x[1]h[0]+x[2]h[1]=2×1+1×1=3

      • n = 0 n=0 n=0: h [ − k ] h[-k] h[k]
        h [ − k ] h[-k] h[k] k = 0 k=0 k=0 处为 h [ 0 ] = 1 h[0]=1 h[0]=1,在 k = − 1 k=-1 k=1 处为 h [ 1 ] = 1 h[1]=1 h[1]=1
        y [ 0 ] = ∑ x [ k ] h [ − k ] = x [ 0 ] h [ 0 ] + x [ − 1 ] h [ 1 ] = 3 × 1 + 2 × 1 = 5 y[0] = \sum x[k]h[-k] = x[0]h[0] + x[-1]h[1] = 3 \times 1 + 2 \times 1 = 5 y[0]=x[k]h[k]=x[0]h[0]+x[1]h[1]=3×1+2×1=5

      • n = 1 n=1 n=1: h [ 1 − k ] h[1-k] h[1k]。要使 h [ 1 − k ] h[1-k] h[1k] 非零,则 1 − k = 0 ⇒ k = 1 1-k=0 \Rightarrow k=1 1k=0k=1 1 − k = − 1 ⇒ k = 0 1-k=-1 \Rightarrow k=0 1k=1k=0
        h [ 1 − k ] h[1-k] h[1k] k = 1 k=1 k=1 处为 h [ 0 ] = 1 h[0]=1 h[0]=1,在 k = 0 k=0 k=0 处为 h [ 1 ] = 1 h[1]=1 h[1]=1
        y [ 1 ] = ∑ x [ k ] h [ 1 − k ] = x [ 0 ] h [ 1 ] = 3 × 1 = 3 y[1] = \sum x[k]h[1-k] = x[0]h[1] = 3 \times 1 = 3 y[1]=x[k]h[1k]=x[0]h[1]=3×1=3。(仅 k = 0 k=0 k=0 处重合)

    所以, y [ n ] = { 1 , 3 , 5 ↑ , 3 } y[n] = \{1, 3, \underset{\uparrow}{5}, 3\} y[n]={1,3,5,3}

4. 序列的周期性

主要针对正余弦序列 x [ n ] = A cos ⁡ ( ω 0 n + ϕ ) x[n] = A \cos(\omega_0 n + \phi) x[n]=Acos(ω0n+ϕ) x [ n ] = A sin ⁡ ( ω 0 n + ϕ ) x[n] = A \sin(\omega_0 n + \phi) x[n]=Asin(ω0n+ϕ)
判断序列是否有周期,看数字角频率 ω 0 \omega_0 ω0 是否为 2 π 2\pi 2π 的有理数倍,即 ω 0 / ( 2 π ) = Q / P \omega_0 / (2\pi) = Q/P ω0/(2π)=Q/P (Q, P为互质整数)。
或者等价地看 2 π / ω 0 2\pi / \omega_0 2π/ω0

  1. 2 π / ω 0 = N 2\pi / \omega_0 = N 2π/ω0=N (整数): 序列是周期的,基本周期为 N N N
  2. 2 π / ω 0 = P / Q 2\pi / \omega_0 = P/Q 2π/ω0=P/Q (有理数,P, Q为互质整数): 序列是周期的,基本周期为 P P P
    (更准确地说,序列的周期是 N 0 = m 2 π ω 0 N_0 = m \frac{2\pi}{\omega_0} N0=mω02π,使得 N 0 N_0 N0 为最小正整数。如果 ω 0 2 π = Q P \frac{\omega_0}{2\pi} = \frac{Q}{P} 2πω0=PQ (最简分数),则基本周期 N 0 = P N_0=P N0=P。)
  3. 2 π / ω 0 2\pi / \omega_0 2π/ω0 (无理数): 序列是非周期的。
  • 例子:
    1. x [ n ] = cos ⁡ ( 0.2 π n ) x[n] = \cos(0.2\pi n) x[n]=cos(0.2πn): ω 0 = 0.2 π \omega_0 = 0.2\pi ω0=0.2π ω 0 / ( 2 π ) = 0.2 π / ( 2 π ) = 1 / 5 \omega_0/(2\pi) = 0.2\pi / (2\pi) = 1/5 ω0/(2π)=0.2π/(2π)=1/5 Q = 1 , P = 5 Q=1, P=5 Q=1,P=5。基本周期为 P = 5 P=5 P=5
      (或者 2 π / ω 0 = 2 π / ( 0.2 π ) = 10 2\pi / \omega_0 = 2\pi / (0.2\pi) = 10 2π/ω0=2π/(0.2π)=10。这里 P / Q = 10 / 1 P/Q = 10/1 P/Q=10/1,周期为10。注意: ω 0 / ( 2 π ) = 1 / 10 \omega_0/(2\pi) = 1/10 ω0/(2π)=1/10。周期是10。
      让我们统一用 ω 0 / ( 2 π ) = Q / P ⇒ N 0 = P \omega_0/(2\pi) = Q/P \Rightarrow N_0=P ω0/(2π)=Q/PN0=P
      x [ n ] = cos ⁡ ( 0.2 π n ) x[n] = \cos(0.2\pi n) x[n]=cos(0.2πn): ω 0 = 0.2 π \omega_0 = 0.2\pi ω0=0.2π. ω 0 / ( 2 π ) = 0.2 π / ( 2 π ) = 1 / 5 \omega_0/(2\pi) = 0.2\pi/(2\pi) = 1/5 ω0/(2π)=0.2π/(2π)=1/5. P = 5 P=5 P=5. 周期为 5 5 5
      x [ n ] = cos ⁡ ( 0.1 π n ) x[n] = \cos(0.1\pi n) x[n]=cos(0.1πn): ω 0 = 0.1 π \omega_0 = 0.1\pi ω0=0.1π. ω 0 / ( 2 π ) = 0.1 π / ( 2 π ) = 1 / 20 \omega_0/(2\pi) = 0.1\pi/(2\pi) = 1/20 ω0/(2π)=0.1π/(2π)=1/20. P = 20 P=20 P=20. 周期为 20 20 20
    2. x [ n ] = cos ⁡ ( n ) x[n] = \cos(n) x[n]=cos(n): ω 0 = 1 \omega_0 = 1 ω0=1 ω 0 / ( 2 π ) = 1 / ( 2 π ) \omega_0/(2\pi) = 1/(2\pi) ω0/(2π)=1/(2π) (无理数)。非周期序列。
    3. x [ n ] = cos ⁡ ( 3 π 5 n ) x[n] = \cos(\frac{3\pi}{5}n) x[n]=cos(53πn): ω 0 = 3 π 5 \omega_0 = \frac{3\pi}{5} ω0=53π. ω 0 / ( 2 π ) = 3 π / 5 2 π = 3 10 \omega_0/(2\pi) = \frac{3\pi/5}{2\pi} = \frac{3}{10} ω0/(2π)=2π3π/5=103. P = 10 P=10 P=10. 周期为 10 10 10

5. 采样 (Sampling)

  • 采样周期 T T T (Sampling Period): 连续信号采样的时间间隔。

  • 采样频率 f s f_s fs (Sampling Frequency): f s = 1 / T f_s = 1/T fs=1/T,单位赫兹 (Hz),表示每秒的采样点数。

  • 采样角频率 Ω s \Omega_s Ωs (Sampling Angular Frequency): Ω s = 2 π f s = 2 π / T \Omega_s = 2\pi f_s = 2\pi/T Ωs=2πfs=2π/T,单位弧度每秒 (rad/s)。

  • 采样过程:

    1. 原始连续时间信号 x c ( t ) x_c(t) xc(t)
    2. 理想采样: x s ( t ) = x c ( t ) ∑ k = − ∞ ∞ δ ( t − k T ) = ∑ k = − ∞ ∞ x c ( k T ) δ ( t − k T ) x_s(t) = x_c(t) \sum_{k=-\infty}^{\infty} \delta(t-kT) = \sum_{k=-\infty}^{\infty} x_c(kT)\delta(t-kT) xs(t)=xc(t)k=δ(tkT)=k=xc(kT)δ(tkT)
    3. 离散序列: x [ n ] = x c ( n T ) x[n] = x_c(nT) x[n]=xc(nT)
  • 频域分析:

    • X c ( j Ω ) X_c(j\Omega) Xc(jΩ): x c ( t ) x_c(t) xc(t) 的傅里叶变换。
    • X s ( j Ω ) = 1 T ∑ k = − ∞ ∞ X c ( j ( Ω − k Ω s ) ) X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s)) Xs(jΩ)=T1k=Xc(j(ΩkΩs))
      采样信号的频谱是原始信号频谱以 Ω s \Omega_s Ωs 为周期进行周期延拓,并乘以因子 1 / T 1/T 1/T
    • X ( e j ω ) X(e^{j\omega}) X(e): 离散序列 x [ n ] x[n] x[n] 的DTFT。 ω = Ω T \omega = \Omega T ω=ΩT (归一化数字角频率)。
      X ( e j ω ) = X s ( j Ω ) ∣ Ω = ω / T = 1 T ∑ k = − ∞ ∞ X c ( j ( ω T − k 2 π T ) ) X(e^{j\omega}) = X_s(j\Omega)|_{\Omega=\omega/T} = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\frac{\omega}{T} - k\frac{2\pi}{T})) X(e)=Xs(jΩ)Ω=ω/T=T1k=Xc(j(TωkT2π))
  • 采样定理 (Nyquist-Shannon Sampling Theorem):

    • 若连续时间信号 x c ( t ) x_c(t) xc(t) 的最高频率分量为 Ω m a x \Omega_{max} Ωmax (或 f m a x = Ω m a x / ( 2 π ) f_{max} = \Omega_{max} / (2\pi) fmax=Ωmax/(2π)),则采样角频率 Ω s \Omega_s Ωs (或采样频率 f s f_s fs) 必须满足 Ω s ≥ 2 Ω m a x \Omega_s \ge 2\Omega_{max} Ωs2Ωmax (或 f s ≥ 2 f m a x f_s \ge 2f_{max} fs2fmax) 才能保证采样后的信号频谱不发生混叠 (aliasing),从而可以从采样信号或离散序列无失真地恢复原始信号 x c ( t ) x_c(t) xc(t)

    • 2 Ω m a x 2\Omega_{max} 2Ωmax (或 2 f m a x 2f_{max} 2fmax): 奈奎斯特速率 (Nyquist rate)。

    • Ω s / 2 \Omega_s/2 Ωs/2 (或 f s / 2 f_s/2 fs/2): 奈奎斯特频率 (Nyquist frequency)。

    • 频谱混叠 (Aliasing):

      • 如果 Ω s < 2 Ω m a x \Omega_s < 2\Omega_{max} Ωs<2Ωmax,则 X s ( j Ω ) X_s(j\Omega) Xs(jΩ) 中各周期延拓的频谱会发生重叠,高频分量被误认为低频分量,导致信息失真。
      • 如果 Ω s > 2 Ω m a x \Omega_s > 2\Omega_{max} Ωs>2Ωmax,频谱不混叠。
      • 如果 Ω s = 2 Ω m a x \Omega_s = 2\Omega_{max} Ωs=2Ωmax,临界采样,理论上不混叠,但实际中难以实现理想滤波器。
  • 频率轴归一化: ω = Ω T \omega = \Omega T ω=ΩT。将连续角频率 Ω \Omega Ω 映射到离散角频率 ω \omega ω
    如果采样前已发生混叠,则归一化后频谱仍然混叠。

二、题型一:系统的性质判断

判断系统的线性、时不变性、因果性和稳定性。

  1. 线性 (Linearity)

    • 定义:若系统 T { ⋅ } T\{\cdot\} T{} 满足叠加原理,则为线性系统。
    • 对任意输入 x 1 [ n ] , x 2 [ n ] x_1[n], x_2[n] x1[n],x2[n] 和任意常数 a , b a, b a,b,若 T { a x 1 [ n ] + b x 2 [ n ] } = a T { x 1 [ n ] } + b T { x 2 [ n ] } T\{ax_1[n] + bx_2[n]\} = aT\{x_1[n]\} + bT\{x_2[n]\} T{ax1[n]+bx2[n]}=aT{x1[n]}+bT{x2[n]},则系统是线性的。
  2. 时不变性 (Time-Invariance)

    • 定义:若输入序列的任意位移引起输出序列相同方式的位移,则为时不变系统。
    • y [ n ] = T { x [ n ] } y[n] = T\{x[n]\} y[n]=T{x[n]},则 y [ n − n 0 ] = T { x [ n − n 0 ] } y[n-n_0] = T\{x[n-n_0]\} y[nn0]=T{x[nn0]} 对任意整数 n 0 n_0 n0 成立。
  3. 因果性 (Causality)

    • 定义:系统在任意时刻 n 0 n_0 n0 的输出 y [ n 0 ] y[n_0] y[n0] 只取决于当前及以前的输入样本 ( x [ k ] x[k] x[k] for k ≤ n 0 k \le n_0 kn0),而与将来的输入样本 ( x [ k ] x[k] x[k] for k > n 0 k > n_0 k>n0) 无关。
  4. 稳定性 (Stability - BIBO Stability)

    • 定义:对任意有界输入 (Bounded Input) 都产生有界输出 (Bounded Output) 的系统,称为BIBO稳定系统。
    • ∣ x [ n ] ∣ ≤ M x < ∞ |x[n]| \le M_x < \infty x[n]Mx< 对所有 n n n 成立,则 ∣ y [ n ] ∣ ≤ M y < ∞ |y[n]| \le M_y < \infty y[n]My< 对所有 n n n 成立。
    • 对于LTI系统,其冲激响应 h [ n ] h[n] h[n] 绝对可和是系统稳定的充要条件: ∑ n = − ∞ ∞ ∣ h [ n ] ∣ < ∞ \sum_{n=-\infty}^{\infty} |h[n]| < \infty n=h[n]<
  • 例:判断系统 y [ n ] = x [ − n ] y[n] = x[-n] y[n]=x[n] 的性质

    1. 稳定性:
      设输入 x [ n ] x[n] x[n] 有界,即 ∣ x [ n ] ∣ ≤ M x < ∞ |x[n]| \le M_x < \infty x[n]Mx< 对所有 n n n
      则输出 ∣ y [ n ] ∣ = ∣ x [ − n ] ∣ |y[n]| = |x[-n]| y[n]=x[n]。由于 − n -n n 只是索引的变化,它仍然会取遍所有整数索引,所以 x [ − n ] x[-n] x[n] 的值集合与 x [ n ] x[n] x[n] 的值集合相同。因此 ∣ x [ − n ] ∣ ≤ M x < ∞ |x[-n]| \le M_x < \infty x[n]Mx<
      所以,系统是 稳定 的。

    2. 因果性:
      考虑 n = − 1 n=-1 n=1 y [ − 1 ] = x [ − ( − 1 ) ] = x [ 1 ] y[-1] = x[-(-1)] = x[1] y[1]=x[(1)]=x[1]。输出 y [ − 1 ] y[-1] y[1] 取决于将来的输入 x [ 1 ] x[1] x[1] (因为 1 > − 1 1 > -1 1>1)。
      由于存在输出取决于将来输入的情况(例如,当 n < 0 n<0 n<0 时, y [ n ] = x [ − n ] y[n]=x[-n] y[n]=x[n],此时 − n > n -n > n n>n),
      所以,系统是 非因果 的。

    3. 线性:
      令输入为 x a [ n ] = a x 1 [ n ] + b x 2 [ n ] x_a[n] = a x_1[n] + b x_2[n] xa[n]=ax1[n]+bx2[n]
      系统对 x a [ n ] x_a[n] xa[n] 的响应为 T { x a [ n ] } = x a [ − n ] = a x 1 [ − n ] + b x 2 [ − n ] T\{x_a[n]\} = x_a[-n] = a x_1[-n] + b x_2[-n] T{xa[n]}=xa[n]=ax1[n]+bx2[n]
      分别考虑 y 1 [ n ] = T { x 1 [ n ] } = x 1 [ − n ] y_1[n] = T\{x_1[n]\} = x_1[-n] y1[n]=T{x1[n]}=x1[n] y 2 [ n ] = T { x 2 [ n ] } = x 2 [ − n ] y_2[n] = T\{x_2[n]\} = x_2[-n] y2[n]=T{x2[n]}=x2[n]
      a y 1 [ n ] + b y 2 [ n ] = a x 1 [ − n ] + b x 2 [ − n ] a y_1[n] + b y_2[n] = a x_1[-n] + b x_2[-n] ay1[n]+by2[n]=ax1[n]+bx2[n]
      因为 T { a x 1 [ n ] + b x 2 [ n ] } = a T { x 1 [ n ] } + b T { x 2 [ n ] } T\{a x_1[n] + b x_2[n]\} = a T\{x_1[n]\} + b T\{x_2[n]\} T{ax1[n]+bx2[n]}=aT{x1[n]}+bT{x2[n]}
      所以,系统是 线性 的。

    4. 时不变性:
      y [ n ] = T { x [ n ] } = x [ − n ] y[n] = T\{x[n]\} = x[-n] y[n]=T{x[n]}=x[n]
      输出移位: y [ n − n 0 ] = x [ − ( n − n 0 ) ] = x [ − n + n 0 ] y[n-n_0] = x[-(n-n_0)] = x[-n+n_0] y[nn0]=x[(nn0)]=x[n+n0]
      输入移位:令 x ′ [ n ] = x [ n − n 0 ] x'[n] = x[n-n_0] x[n]=x[nn0]
      系统对移位输入的响应: T { x ′ [ n ] } = x ′ [ − n ] = x [ − n − n 0 ] T\{x'[n]\} = x'[-n] = x[-n-n_0] T{x[n]}=x[n]=x[nn0]
      比较 x [ − n + n 0 ] x[-n+n_0] x[n+n0] x [ − n − n 0 ] x[-n-n_0] x[nn0]。除非 n 0 = 0 n_0=0 n0=0,否则两者一般不相等。
      所以,系统是 时变 的。

三、题型二:离散时间傅里叶变换 (DTFT) 和 Z 变换

1. 常见序列的DTFT和Z变换及性质

  • DTFT (Discrete-Time Fourier Transform):

    • 分析式: X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] e − j ω n X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} X(e)=n=x[n]ejωn
    • 综合式: x [ n ] = 1 2 π ∫ − π π X ( e j ω ) e j ω n d ω x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega x[n]=2π1ππX(e)ejωndω
  • Z变换 (Z-Transform):

    • 分析式: X ( z ) = ∑ n = − ∞ ∞ x [ n ] z − n X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} X(z)=n=x[n]zn
    • 综合式: x [ n ] = 1 2 π j ∮ C X ( z ) z n − 1 d z x[n] = \frac{1}{2\pi j} \oint_C X(z)z^{n-1} dz x[n]=2πj1CX(z)zn1dz (围线积分)
  • 重要: 务必熟记常见序列的DTFT、Z变换及其收敛域 (ROC),以及DTFT和Z变换的性质(线性、时移、频移/Z域尺度变换、卷积、对称性等)。

    • DTFT对称性质 (若 x [ n ] x[n] x[n] 为实序列):
      • X ( e j ω ) X(e^{j\omega}) X(e) 是共轭对称的: X ( e j ω ) = X ∗ ( e − j ω ) X(e^{j\omega}) = X^*(e^{-j\omega}) X(e)=X(e)
      • ∣ X ( e j ω ) ∣ |X(e^{j\omega})| X(e) 是偶对称的: ∣ X ( e j ω ) ∣ = ∣ X ( e − j ω ) ∣ |X(e^{j\omega})| = |X(e^{-j\omega})| X(e)=X(e)
      • ∠ X ( e j ω ) \angle X(e^{j\omega}) X(e) 是奇对称的: ∠ X ( e j ω ) = − ∠ X ( e − j ω ) \angle X(e^{j\omega}) = -\angle X(e^{-j\omega}) X(e)=X(e)
      • x e [ n ] x_e[n] xe[n] (实偶部) ↔ R e { X ( e j ω ) } \leftrightarrow Re\{X(e^{j\omega})\} Re{X(e)} (实部,偶函数)
      • x o [ n ] x_o[n] xo[n] (实奇部) ↔ j I m { X ( e j ω ) } \leftrightarrow j Im\{X(e^{j\omega})\} jIm{X(e)} (虚部乘以j,奇函数)
    • Z变换性质:
      • 时移: x [ n − n 0 ] ↔ z − n 0 X ( z ) x[n-n_0] \leftrightarrow z^{-n_0}X(z) x[nn0]zn0X(z) (ROC不变,可能增加或减少 z = 0 z=0 z=0 z = ∞ z=\infty z= 的极点/零点)
      • 卷积: x 1 [ n ] ∗ x 2 [ n ] ↔ X 1 ( z ) X 2 ( z ) x_1[n]*x_2[n] \leftrightarrow X_1(z)X_2(z) x1[n]x2[n]X1(z)X2(z) (ROC为 R 1 ∩ R 2 R_1 \cap R_2 R1R2)

2. 基本概念辨析

  • 系统函数 (System Function): H ( z ) H(z) H(z),是系统单位冲激响应 h [ n ] h[n] h[n] 的Z变换。
  • 频率响应 (Frequency Response): H ( e j ω ) H(e^{j\omega}) H(e),是系统函数 H ( z ) H(z) H(z) 在单位圆 z = e j ω z=e^{j\omega} z=e 上的取值。前提是 H ( z ) H(z) H(z) 的收敛域 (ROC) 包含单位圆。
  • 单位脉冲响应 (Unit Impulse Response): h [ n ] h[n] h[n],系统对单位脉冲输入 δ [ n ] \delta[n] δ[n] 的响应。

3. 系统差分方程与系统函数的相互转化

  • 例:已知差分方程 y [ n ] − 0.5 y [ n − 1 ] = x [ n ] + 0.2 x [ n − 1 ] y[n] - 0.5y[n-1] = x[n] + 0.2x[n-1] y[n]0.5y[n1]=x[n]+0.2x[n1],求系统函数 H ( z ) H(z) H(z)
    1. 对差分方程两边取Z变换: (假设初始条件为零,即求零状态响应对应的系统函数)
      Y ( z ) − 0.5 z − 1 Y ( z ) = X ( z ) + 0.2 z − 1 X ( z ) Y(z) - 0.5z^{-1}Y(z) = X(z) + 0.2z^{-1}X(z) Y(z)0.5z1Y(z)=X(z)+0.2z1X(z)
    2. 提取 Y ( z ) Y(z) Y(z) X ( z ) X(z) X(z)
      Y ( z ) ( 1 − 0.5 z − 1 ) = X ( z ) ( 1 + 0.2 z − 1 ) Y(z)(1 - 0.5z^{-1}) = X(z)(1 + 0.2z^{-1}) Y(z)(10.5z1)=X(z)(1+0.2z1)
    3. H ( z ) = Y ( z ) / X ( z ) H(z) = Y(z)/X(z) H(z)=Y(z)/X(z)
      H ( z ) = Y ( z ) X ( z ) = 1 + 0.2 z − 1 1 − 0.5 z − 1 H(z) = \frac{Y(z)}{X(z)} = \frac{1 + 0.2z^{-1}}{1 - 0.5z^{-1}} H(z)=X(z)Y(z)=10.5z11+0.2z1
      对于因果系统,ROC为 ∣ z ∣ > 0.5 |z| > 0.5 z>0.5

4. 系统稳定性判断 (根据 H ( z ) H(z) H(z))

  • 判断依据:LTI系统稳定的充要条件是其系统函数 H ( z ) H(z) H(z) 的收敛域 (ROC) 包含单位圆 ∣ z ∣ = 1 |z|=1 z=1
  • 对于因果LTI系统:
    • ROC为 ∣ z ∣ > ∣ p m a x ∣ |z| > |p_{max}| z>pmax,其中 p m a x p_{max} pmax 是模最大的极点。
    • 若所有极点都位于单位圆内 (即 ∣ p k ∣ < 1 |p_k|<1 pk<1 for all k k k),则ROC为 ∣ z ∣ > ∣ p m a x ∣ |z|>|p_{max}| z>pmax (其中 ∣ p m a x ∣ < 1 |p_{max}|<1 pmax<1) 必然包含单位圆,系统稳定。

5. 系统零极点图绘制

  • 步骤:

    1. 将系统函数 H ( z ) H(z) H(z) 化简为分子分母均为 z z z 的多项式乘积形式,通常表示为:
      H ( z ) = K z l ∏ ( z − z i ) ∏ ( z − p k ) 或 H ( z ) = K ′ ∏ ( 1 − z i z − 1 ) ∏ ( 1 − p k z − 1 ) H(z) = K z^l \frac{\prod (z-z_i)}{\prod (z-p_k)} \quad \text{或} \quad H(z) = K' \frac{\prod (1-z_i z^{-1})}{\prod (1-p_k z^{-1})} H(z)=Kzl(zpk)(zzi)H(z)=K(1pkz1)(1ziz1)
      (注意 z − 1 z^{-1} z1 形式时,零点是 z i z_i zi,极点是 p k p_k pk。若为 z z z 的正幂次形式,零点是 z i z_i zi,极点是 p k p_k pk)
    2. 零点 (Zeros): 使分子为零的 z z z 值 (图中用 ‘o’ 表示)。
    3. 极点 (Poles): 使分母为零的 z z z 值 (图中用 ‘x’ 表示)。
    4. 多阶零/极点: 需标注阶数。
    5. 处理 z = 0 z=0 z=0 z = ∞ z=\infty z= 处的零极点:
      H ( z ) H(z) H(z) 写成 z z z 的正幂次形式 H ( z ) = K z l ∏ i = 1 M 0 ( z − z i ) ∏ k = 1 N 0 ( z − p k ) H(z) = K z^l \frac{\prod_{i=1}^{M_0} (z-z_i)}{\prod_{k=1}^{N_0} (z-p_k)} H(z)=Kzlk=1N0(zpk)i=1M0(zzi),其中 z i ≠ 0 , p k ≠ 0 z_i \neq 0, p_k \neq 0 zi=0,pk=0
      总零点数 = M 0 + ( 在 z = 0 处的零点阶数 ) + ( 在 z = ∞ 处的零点阶数 ) M_0 + (\text{在} z=0 \text{处的零点阶数}) + (\text{在} z=\infty \text{处的零点阶数}) M0+(z=0处的零点阶数)+(z=处的零点阶数)
      总极点数 = N 0 + ( 在 z = 0 处的极点阶数 ) + ( 在 z = ∞ 处的极点阶数 ) N_0 + (\text{在} z=0 \text{处的极点阶数}) + (\text{在} z=\infty \text{处的极点阶数}) N0+(z=0处的极点阶数)+(z=处的极点阶数)
      总零点数 = 总极点数。
      l > 0 l>0 l>0,则在 z = 0 z=0 z=0 处有 l l l 阶零点。若 l < 0 l<0 l<0,则在 z = 0 z=0 z=0 处有 ∣ l ∣ |l| l 阶极点。
      M = M 0 + l M = M_0+l M=M0+l (分子总次数), N = N 0 N=N_0 N=N0 (分母总次数)。
      M > N M>N M>N,则在 z = ∞ z=\infty z= 处有 M − N M-N MN 阶零点。
      N > M N>M N>M,则在 z = ∞ z=\infty z= 处有 N − M N-M NM 阶极点。
  • 例: H ( z ) = z − 1 ( 1 − 0.5 z − 1 ) ( 1 − 2 z − 1 ) H(z) = \frac{z^{-1}}{(1-0.5z^{-1})(1-2z^{-1})} H(z)=(10.5z1)(12z1)z1,画出零极点图。

    1. 化简为 z z z 的正幂次形式:
      H ( z ) = z − 1 ⋅ z 2 ( 1 − 0.5 z − 1 ) ( 1 − 2 z − 1 ) ⋅ z 2 = z ( z − 0.5 ) ( z − 2 ) H(z) = \frac{z^{-1} \cdot z^2}{(1-0.5z^{-1})(1-2z^{-1}) \cdot z^2} = \frac{z}{(z-0.5)(z-2)} H(z)=(10.5z1)(12z1)z2z1z2=(z0.5)(z2)z
    2. 有限非零零点: 分子 z = 0 ⇒ z=0 \Rightarrow z=0 z = 0 z=0 z=0 处有一个零点。
    3. 有限非零极点: 分母 ( z − 0.5 ) ( z − 2 ) = 0 ⇒ (z-0.5)(z-2)=0 \Rightarrow (z0.5)(z2)=0 极点在 z = 0.5 z=0.5 z=0.5 z = 2 z=2 z=2
    4. z = ∞ z=\infty z= 处的零极点:
      分子 z z z 的最高次幂为1 ( M = 1 M=1 M=1),分母 z z z 的最高次幂为2 ( N = 2 N=2 N=2)。
      因为 N > M N > M N>M,所以在 z = ∞ z=\infty z= 处有 N − M = 2 − 1 = 1 N-M = 2-1=1 NM=21=1 阶极点。
      检查: 零点数:1 (在 z = 0 z=0 z=0)。极点数:2 (在 z = 0.5 , z = 2 z=0.5, z=2 z=0.5,z=2) + 1 (在 z = ∞ z=\infty z=) = 3。
      这不符合零极点个数相等的原则。
      让我们重新审视 H ( z ) = z ( z − 0.5 ) ( z − 2 ) H(z) = \frac{z}{(z-0.5)(z-2)} H(z)=(z0.5)(z2)z
      分子阶数 M = 1 M=1 M=1 (零点 z 1 = 0 z_1=0 z1=0)。
      分母阶数 N = 2 N=2 N=2 (极点 p 1 = 0.5 , p 2 = 2 p_1=0.5, p_2=2 p1=0.5,p2=2)。
      N > M N > M N>M 时,在 z = ∞ z=\infty z= 处有 N − M = 2 − 1 = 1 N-M = 2-1=1 NM=21=1 阶零点。
      所以:
      零点: z = 0 z=0 z=0 (1个), z = ∞ z=\infty z= (1个)。
      极点: z = 0.5 z=0.5 z=0.5 (1个), z = 2 z=2 z=2 (1个)。
      总零点数 = 2,总极点数 = 2。这样才对。

6. 幅频和相频特性图的画法 (几何法)

从零极点图估算 H ( e j ω ) H(e^{j\omega}) H(e)。单位圆上一点 e j ω e^{j\omega} e (考察点) 从 ω = 0 \omega=0 ω=0 沿逆时针转到 ω = 2 π \omega=2\pi ω=2π
H ( e j ω ) = K ∏ i = 1 M ( e j ω − z i ) ∏ k = 1 N ( e j ω − p k ) H(e^{j\omega}) = K \frac{\prod_{i=1}^{M} (e^{j\omega}-z_i)}{\prod_{k=1}^{N} (e^{j\omega}-p_k)} H(e)=Kk=1N(epk)i=1M(ezi) (这里 z i , p k z_i, p_k zi,pk 是有限非零零极点)

  • 幅频响应 ∣ H ( e j ω ) ∣ |H(e^{j\omega})| H(e):
    ∣ H ( e j ω ) ∣ = ∣ K ∣ ∏ i = 1 M ∣ e j ω − z i ∣ ∏ k = 1 N ∣ e j ω − p k ∣ |H(e^{j\omega})| = |K| \frac{\prod_{i=1}^{M} |e^{j\omega}-z_i|}{\prod_{k=1}^{N} |e^{j\omega}-p_k|} H(e)=Kk=1Nepki=1Mezi
    ∣ e j ω − z i ∣ |e^{j\omega}-z_i| ezi 是从零点 z i z_i zi 到单位圆上考察点 e j ω e^{j\omega} e 的向量长度。
    ∣ e j ω − p k ∣ |e^{j\omega}-p_k| epk 是从极点 p k p_k pk 到单位圆上考察点 e j ω e^{j\omega} e 的向量长度。
    当考察点靠近零点时,幅度减小;靠近极点时,幅度增大。

  • 相频响应 ∠ H ( e j ω ) \angle H(e^{j\omega}) H(e):
    ∠ H ( e j ω ) = ∠ K + ∑ i = 1 M ∠ ( e j ω − z i ) − ∑ k = 1 N ∠ ( e j ω − p k ) \angle H(e^{j\omega}) = \angle K + \sum_{i=1}^{M} \angle(e^{j\omega}-z_i) - \sum_{k=1}^{N} \angle(e^{j\omega}-p_k) H(e)=K+i=1M(ezi)k=1N(epk)
    ∠ ( e j ω − z i ) \angle(e^{j\omega}-z_i) (ezi) 是从零点 z i z_i zi 到考察点 e j ω e^{j\omega} e 的向量与实轴正向的夹角。
    ∠ ( e j ω − p k ) \angle(e^{j\omega}-p_k) (epk) 是从极点 p k p_k pk 到考察点 e j ω e^{j\omega} e 的向量与实轴正向的夹角。

7. Z反变换求法 (部分分式展开法)

  • 前提: 保证 H ( z ) H(z) H(z) 为关于 z − 1 z^{-1} z1 的真分式,即分母中 z − 1 z^{-1} z1 的最高次幂大于分子中 z − 1 z^{-1} z1 的最高次幂。如果不是,先进行长除法,分离出常数项或 z z z 的正幂次项。
  • 步骤:
    1. 无重根情况:
      H ( z ) = ∑ k = 1 N A k 1 − p k z − 1 H(z) = \sum_{k=1}^{N} \frac{A_k}{1-p_k z^{-1}} H(z)=k=1N1pkz1Ak
      A k = [ ( 1 − p k z − 1 ) H ( z ) ] z − 1 = 1 / p k A_k = [(1-p_k z^{-1})H(z)]_{z^{-1}=1/p_k} Ak=[(1pkz1)H(z)]z1=1/pk (或者 A k = [ ( 1 − p k z − 1 ) H ( z ) ] z = p k A_k = [(1-p_k z^{-1})H(z)]_{z=p_k} Ak=[(1pkz1)H(z)]z=pk,但前者更方便)
      然后根据收敛域查表得到 h [ n ] h[n] h[n]

      • 若ROC为 ∣ z ∣ > ∣ p k ∣ |z|>|p_k| z>pk (右边序列),则 A k 1 − p k z − 1 ↔ A k ( p k ) n u [ n ] \frac{A_k}{1-p_k z^{-1}} \leftrightarrow A_k (p_k)^n u[n] 1pkz1AkAk(pk)nu[n]
      • 若ROC为 ∣ z ∣ < ∣ p k ∣ |z|<|p_k| z<pk (左边序列),则 A k 1 − p k z − 1 ↔ − A k ( p k ) n u [ − n − 1 ] \frac{A_k}{1-p_k z^{-1}} \leftrightarrow -A_k (p_k)^n u[-n-1] 1pkz1AkAk(pk)nu[n1]
    2. 有重根情况:
      H ( z ) H(z) H(z) m m m 阶极点 p 0 p_0 p0 (对应项 ( 1 − p 0 z − 1 ) m (1-p_0 z^{-1})^m (1p0z1)m),则部分分式展开包含项:
      C 1 1 − p 0 z − 1 + C 2 ( 1 − p 0 z − 1 ) 2 + ⋯ + C m ( 1 − p 0 z − 1 ) m \frac{C_1}{1-p_0 z^{-1}} + \frac{C_2}{(1-p_0 z^{-1})^2} + \dots + \frac{C_m}{(1-p_0 z^{-1})^m} 1p0z1C1+(1p0z1)2C2++(1p0z1)mCm
      F ( z ) = ( 1 − p 0 z − 1 ) m H ( z ) F(z) = (1-p_0 z^{-1})^m H(z) F(z)=(1p0z1)mH(z)
      C m = [ F ( z ) ] z − 1 = 1 / p 0 C_m = [F(z)]_{z^{-1}=1/p_0} Cm=[F(z)]z1=1/p0
      C m − 1 = 1 1 ! d d ( z − 1 ) [ F ( z ) ] z − 1 = 1 / p 0 C_{m-1} = \frac{1}{1!} \frac{d}{d(z^{-1})} [F(z)]_{z^{-1}=1/p_0} Cm1=1!1d(z1)d[F(z)]z1=1/p0

      C m − j = 1 j ! d j d ( z − 1 ) j [ F ( z ) ] z − 1 = 1 / p 0 C_{m-j} = \frac{1}{j!} \frac{d^j}{d(z^{-1})^j} [F(z)]_{z^{-1}=1/p_0} Cmj=j!1d(z1)jdj[F(z)]z1=1/p0
      查表 (以右边序列为例,ROC: ∣ z ∣ > ∣ p 0 ∣ |z|>|p_0| z>p0):

      • A ( p 0 ) n u [ n ] ↔ A 1 − p 0 z − 1 A(p_0)^n u[n] \leftrightarrow \frac{A}{1-p_0 z^{-1}} A(p0)nu[n]1p0z1A
      • A ( n + 1 ) ( p 0 ) n u [ n ] ↔ A ( 1 − p 0 z − 1 ) 2 A(n+1)(p_0)^n u[n] \leftrightarrow \frac{A}{(1-p_0 z^{-1})^2} A(n+1)(p0)nu[n](1p0z1)2A
      • A ( n + m − 1 ) ! n ! ( m − 1 ) ! ( p 0 ) n u [ n ] = A C n + m − 1 m − 1 ( p 0 ) n u [ n ] ↔ A ( 1 − p 0 z − 1 ) m A \frac{(n+m-1)!}{n!(m-1)!} (p_0)^n u[n] = A C_{n+m-1}^{m-1} (p_0)^n u[n] \leftrightarrow \frac{A}{(1-p_0 z^{-1})^m} An!(m1)!(n+m1)!(p0)nu[n]=ACn+m1m1(p0)nu[n](1p0z1)mA

8. 零输入、零状态和全响应

  • 全响应 y [ n ] y[n] y[n] = 零输入响应 y z i [ n ] y_{zi}[n] yzi[n] + 零状态响应 y z s [ n ] y_{zs}[n] yzs[n]

  • 零输入响应 (Zero-Input Response, y z i [ n ] y_{zi}[n] yzi[n]): 系统初始条件不为零,外加激励信号 x [ n ] x[n] x[n] 为零时产生的输出响应。

    • 求解方法:通常用时域法。由差分方程的齐次解形式确定,系数由初始条件定出。
      Q ( E ) y [ n ] = 0 ⇒ Q ( λ ) = 0 Q(E)y[n]=0 \Rightarrow Q(\lambda)=0 Q(E)y[n]=0Q(λ)=0 (特征方程),解出特征根 λ i \lambda_i λi
      y z i [ n ] = ∑ C i ( λ i ) n y_{zi}[n] = \sum C_i (\lambda_i)^n yzi[n]=Ci(λi)n (无重根时)。
  • 零状态响应 (Zero-State Response, y z s [ n ] y_{zs}[n] yzs[n]): 系统初始条件为零,在外加信号激励 x [ n ] x[n] x[n] 下产生的输出响应。

    • 求解方法:通常用频域法 (Z变换)。 Y z s ( z ) = H ( z ) X ( z ) Y_{zs}(z) = H(z)X(z) Yzs(z)=H(z)X(z),然后求Z反变换。
  • 自由响应 (Free Response / Natural Response): 由系统本身特性(特征根)决定的响应,形式与齐次解相同。

  • 强迫响应 (Forced Response / Particular Solution): 与外加激励信号形式有关的响应。

  • 关系:

    • y z i [ n ] y_{zi}[n] yzi[n] 完全是自由响应。
    • y z s [ n ] y_{zs}[n] yzs[n] 包含自由响应部分和强迫响应部分。
  • 例:已知系统差分方程 y [ n ] − 3 4 y [ n − 1 ] + 1 8 y [ n − 2 ] = x [ n ] y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = x[n] y[n]43y[n1]+81y[n2]=x[n]。输入 x [ n ] = ( 0.5 ) n u [ n ] x[n] = (0.5)^n u[n] x[n]=(0.5)nu[n],初始条件 y [ − 1 ] = 1 , y [ − 2 ] = 0 y[-1]=1, y[-2]=0 y[1]=1,y[2]=0。求因果系统的完全响应 y [ n ] y[n] y[n]

    1. 系统函数 H ( z ) H(z) H(z) (用于求零状态响应):
      H ( z ) = 1 1 − 3 4 z − 1 + 1 8 z − 2 = 1 ( 1 − 1 2 z − 1 ) ( 1 − 1 4 z − 1 ) H(z) = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} = \frac{1}{(1-\frac{1}{2}z^{-1})(1-\frac{1}{4}z^{-1})} H(z)=143z1+81z21=(121z1)(141z1)1

    2. 零输入响应 y z i [ n ] y_{zi}[n] yzi[n] (时域法):
      特征方程: λ 2 − 3 4 λ + 1 8 = 0 ⇒ ( λ − 1 2 ) ( λ − 1 4 ) = 0 \lambda^2 - \frac{3}{4}\lambda + \frac{1}{8} = 0 \Rightarrow (\lambda-\frac{1}{2})(\lambda-\frac{1}{4})=0 λ243λ+81=0(λ21)(λ41)=0
      特征根: λ 1 = 1 / 2 , λ 2 = 1 / 4 \lambda_1 = 1/2, \lambda_2 = 1/4 λ1=1/2,λ2=1/4
      y z i [ n ] = C 1 ( 1 / 2 ) n + C 2 ( 1 / 4 ) n y_{zi}[n] = C_1(1/2)^n + C_2(1/4)^n yzi[n]=C1(1/2)n+C2(1/4)n
      利用初始条件 y [ − 1 ] = 1 , y [ − 2 ] = 0 y[-1]=1, y[-2]=0 y[1]=1,y[2]=0 (这些是全响应的初始条件,在求零输入响应时,我们假设 x [ n ] = 0 x[n]=0 x[n]=0 for n ≥ 0 n \ge 0 n0,并用这些初始条件来确定 y z i [ n ] y_{zi}[n] yzi[n] for n ≥ 0 n \ge 0 n0)
      对于 n ≥ 0 n \ge 0 n0,当 x [ n ] = 0 x[n]=0 x[n]=0 时, y [ n ] = 3 4 y [ n − 1 ] − 1 8 y [ n − 2 ] y[n] = \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2] y[n]=43y[n1]81y[n2]
      y [ 0 ] = 3 4 y [ − 1 ] − 1 8 y [ − 2 ] = 3 4 ( 1 ) − 1 8 ( 0 ) = 3 4 y[0] = \frac{3}{4}y[-1] - \frac{1}{8}y[-2] = \frac{3}{4}(1) - \frac{1}{8}(0) = \frac{3}{4} y[0]=43y[1]81y[2]=43(1)81(0)=43
      y [ 1 ] = 3 4 y [ 0 ] − 1 8 y [ − 1 ] = 3 4 ( 3 4 ) − 1 8 ( 1 ) = 9 16 − 2 16 = 7 16 y[1] = \frac{3}{4}y[0] - \frac{1}{8}y[-1] = \frac{3}{4}(\frac{3}{4}) - \frac{1}{8}(1) = \frac{9}{16} - \frac{2}{16} = \frac{7}{16} y[1]=43y[0]81y[1]=43(43)81(1)=169162=167
      代入 y z i [ n ] y_{zi}[n] yzi[n] 的通解 (适用于 n ≥ 0 n \ge 0 n0):
      y z i [ 0 ] = C 1 + C 2 = 3 / 4 y_{zi}[0] = C_1 + C_2 = 3/4 yzi[0]=C1+C2=3/4
      y z i [ 1 ] = ( 1 / 2 ) C 1 + ( 1 / 4 ) C 2 = 7 / 16 ⇒ 2 C 1 + C 2 = 7 / 4 y_{zi}[1] = (1/2)C_1 + (1/4)C_2 = 7/16 \Rightarrow 2C_1 + C_2 = 7/4 yzi[1]=(1/2)C1+(1/4)C2=7/162C1+C2=7/4
      解方程组:
      ( 2 C 1 + C 2 ) − ( C 1 + C 2 ) = 7 / 4 − 3 / 4 ⇒ C 1 = 4 / 4 = 1 (2C_1 + C_2) - (C_1 + C_2) = 7/4 - 3/4 \Rightarrow C_1 = 4/4 = 1 (2C1+C2)(C1+C2)=7/43/4C1=4/4=1
      C 2 = 3 / 4 − C 1 = 3 / 4 − 1 = − 1 / 4 C_2 = 3/4 - C_1 = 3/4 - 1 = -1/4 C2=3/4C1=3/41=1/4
      所以, y z i [ n ] = ( 1 / 2 ) n u [ n ] − 1 4 ( 1 / 4 ) n u [ n ] y_{zi}[n] = (1/2)^n u[n] - \frac{1}{4}(1/4)^n u[n] yzi[n]=(1/2)nu[n]41(1/4)nu[n]

    3. 零状态响应 y z s [ n ] y_{zs}[n] yzs[n] (频域法):
      X ( z ) = Z { ( 0.5 ) n u [ n ] } = 1 1 − 0.5 z − 1 X(z) = Z\{(0.5)^n u[n]\} = \frac{1}{1-0.5z^{-1}} X(z)=Z{(0.5)nu[n]}=10.5z11
      Y z s ( z ) = H ( z ) X ( z ) = 1 ( 1 − 1 2 z − 1 ) ( 1 − 1 4 z − 1 ) ⋅ 1 1 − 1 2 z − 1 = 1 ( 1 − 1 2 z − 1 ) 2 ( 1 − 1 4 z − 1 ) Y_{zs}(z) = H(z)X(z) = \frac{1}{(1-\frac{1}{2}z^{-1})(1-\frac{1}{4}z^{-1})} \cdot \frac{1}{1-\frac{1}{2}z^{-1}} = \frac{1}{(1-\frac{1}{2}z^{-1})^2 (1-\frac{1}{4}z^{-1})} Yzs(z)=H(z)X(z)=(121z1)(141z1)1121z11=(121z1)2(141z1)1
      部分分式展开:
      Y z s ( z ) = A 1 1 − 1 2 z − 1 + A 2 ( 1 − 1 2 z − 1 ) 2 + B 1 − 1 4 z − 1 Y_{zs}(z) = \frac{A_1}{1-\frac{1}{2}z^{-1}} + \frac{A_2}{(1-\frac{1}{2}z^{-1})^2} + \frac{B}{1-\frac{1}{4}z^{-1}} Yzs(z)=121z1A1+(121z1)2A2+141z1B
      B = [ ( 1 − 1 4 z − 1 ) Y z s ( z ) ] z − 1 = 4 = 1 ( 1 − 1 2 ( 4 ) ) 2 = 1 ( 1 − 2 ) 2 = 1 B = [(1-\frac{1}{4}z^{-1})Y_{zs}(z)]_{z^{-1}=4} = \frac{1}{(1-\frac{1}{2}(4))^2} = \frac{1}{(1-2)^2} = 1 B=[(141z1)Yzs(z)]z1=4=(121(4))21=(12)21=1
      A 2 = [ ( 1 − 1 2 z − 1 ) 2 Y z s ( z ) ] z − 1 = 2 = 1 1 − 1 4 ( 2 ) = 1 1 − 1 / 2 = 2 A_2 = [(1-\frac{1}{2}z^{-1})^2 Y_{zs}(z)]_{z^{-1}=2} = \frac{1}{1-\frac{1}{4}(2)} = \frac{1}{1-1/2} = 2 A2=[(121z1)2Yzs(z)]z1=2=141(2)1=11/21=2
      A 1 A_1 A1: 令 z − 1 = 0 z^{-1}=0 z1=0 (或 z → ∞ z \to \infty z)
      Y z s ( 0 ) = 1 = A 1 + A 2 + B = A 1 + 2 + 1 ⇒ A 1 = 1 − 3 = − 2 Y_{zs}(0) = 1 = A_1 + A_2 + B = A_1 + 2 + 1 \Rightarrow A_1 = 1-3 = -2 Yzs(0)=1=A1+A2+B=A1+2+1A1=13=2
      Y z s ( z ) = − 2 1 − 1 2 z − 1 + 2 ( 1 − 1 2 z − 1 ) 2 + 1 1 − 1 4 z − 1 Y_{zs}(z) = \frac{-2}{1-\frac{1}{2}z^{-1}} + \frac{2}{(1-\frac{1}{2}z^{-1})^2} + \frac{1}{1-\frac{1}{4}z^{-1}} Yzs(z)=121z12+(121z1)22+141z11
      y z s [ n ] = ( − 2 ( 0.5 ) n + 2 ( n + 1 ) ( 0.5 ) n + ( 0.25 ) n ) u [ n ] y_{zs}[n] = (-2(0.5)^n + 2(n+1)(0.5)^n + (0.25)^n) u[n] yzs[n]=(2(0.5)n+2(n+1)(0.5)n+(0.25)n)u[n]
      y z s [ n ] = ( 2 n ( 0.5 ) n + ( 0.25 ) n ) u [ n ] y_{zs}[n] = (2n(0.5)^n + (0.25)^n) u[n] yzs[n]=(2n(0.5)n+(0.25)n)u[n]

    4. 完全响应 y [ n ] y[n] y[n] (for n ≥ 0 n \ge 0 n0):
      y [ n ] = y z i [ n ] + y z s [ n ] y[n] = y_{zi}[n] + y_{zs}[n] y[n]=yzi[n]+yzs[n]
      y [ n ] = [ ( 0.5 ) n − 1 4 ( 0.25 ) n ] + [ 2 n ( 0.5 ) n + ( 0.25 ) n ] y[n] = [(0.5)^n - \frac{1}{4}(0.25)^n] + [2n(0.5)^n + (0.25)^n] y[n]=[(0.5)n41(0.25)n]+[2n(0.5)n+(0.25)n] for n ≥ 0 n \ge 0 n0
      y [ n ] = ( 1 + 2 n ) ( 0.5 ) n + 3 4 ( 0.25 ) n y[n] = (1+2n)(0.5)^n + \frac{3}{4}(0.25)^n y[n]=(1+2n)(0.5)n+43(0.25)n, for n ≥ 0 n \ge 0 n0.

续【DSP数字信号处理】期末复习笔记(二)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值