DSP数字信号处理期末复习笔记
一、数字信号处理基础
1. 序列的表示方法
有三种基本的序列表示方法:
-
枚举法 (Enumeration Method)
- 将序列的所有值列入到一个大括号之中。
- 箭头所指的数值代表序列在 n = 0 n=0 n=0 时刻的序列值。
- 示例: x [ n ] = { 1 , 2 , 3 ↑ , 4 , 5 } x[n] = \{1, 2, \underset{\uparrow}{3}, 4, 5\} x[n]={1,2,↑3,4,5} 表示 x [ 0 ] = 3 , x [ − 1 ] = 2 , x [ − 2 ] = 1 , x [ 1 ] = 4 , x [ 2 ] = 5 x[0]=3, x[-1]=2, x[-2]=1, x[1]=4, x[2]=5 x[0]=3,x[−1]=2,x[−2]=1,x[1]=4,x[2]=5。
-
函数表达式法 (Functional Expression Method)
- 通过一个函数表达式来表达序列。
- 求解序列值时,可以通过代入 n = 0 , n = 1 , … n=0, n=1, \dots n=0,n=1,… 等进行求值。
- 示例: x [ n ] = u [ n ] − u [ n − 5 ] x[n] = u[n] - u[n-5] x[n]=u[n]−u[n−5],其中 u [ n ] u[n] u[n] 是单位阶跃序列。此序列表示 x [ 0 ] = 1 , x [ 1 ] = 1 , x [ 2 ] = 1 , x [ 3 ] = 1 , x [ 4 ] = 1 x[0]=1, x[1]=1, x[2]=1, x[3]=1, x[4]=1 x[0]=1,x[1]=1,x[2]=1,x[3]=1,x[4]=1,其余为0。
-
图形表示法 (Graphical Representation Method)
- 将序列的所有值画在一个图形当中,横轴为 n n n,纵轴为 x [ n ] x[n] x[n]。
- 可以直观地看出序列所有值的相对大小关系。
2. 序列的基本运算
-
位移运算 (Shift Operation)
- 遵循“左加右减”的原则。
- y [ n ] = x [ n − n 0 ] y[n] = x[n-n_0] y[n]=x[n−n0]
- 如果 n 0 n_0 n0 是一个正整数,则代表序列 x [ n ] x[n] x[n] 向右移 n 0 n_0 n0 位。
- 如果 n 0 n_0 n0 是一个负整数 (即 x [ n + k ] x[n+k] x[n+k] 且 k > 0 k>0 k>0),则代表序列 x [ n ] x[n] x[n] 向左移 k k k 位。
-
反转运算 (Reversal/Folding Operation)
- y [ n ] = x [ − n ] y[n] = x[-n] y[n]=x[−n]
- 代表序列 x [ n ] x[n] x[n] 按照 n = 0 n=0 n=0 进行反折(对称)。
-
幅度调整与直流偏置
- 标长 (Scaling / Amplitude Scaling): y [ n ] = A ⋅ x [ n ] y[n] = A \cdot x[n] y[n]=A⋅x[n],序列的每个样本值乘以常数 A A A。
- 直流偏置 (DC Offset/Bias): y [ n ] = x [ n ] + A y[n] = x[n] + A y[n]=x[n]+A,序列的每个样本值加上常数 A A A。
-
序列相加 (Addition of Sequences)
- y [ n ] = x 1 [ n ] + x 2 [ n ] y[n] = x_1[n] + x_2[n] y[n]=x1[n]+x2[n]
- 将两个序列在相同 n n n 值的样本值进行相加。
3. 卷积运算 (Convolution)
-
特指线性卷积 (Linear Convolution)。
-
表达式:
y [ n ] = x [ n ] ∗ h [ n ] = ∑ k = − ∞ ∞ x [ k ] h [ n − k ] = ∑ k = − ∞ ∞ h [ k ] x [ n − k ] y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] y[n]=x[n]∗h[n]=k=−∞∑∞x[k]h[n−k]=k=−∞∑∞h[k]x[n−k] -
图解法求解步骤:
- 反转 (Folding): 将其中一个序列(如 h [ k ] h[k] h[k])反转得到 h [ − k ] h[-k] h[−k]。
- 位移 (Shifting): 将反转后的序列
h
[
−
k
]
h[-k]
h[−k] 右移
n
n
n 个样本得到
h
[
n
−
k
]
h[n-k]
h[n−k]。
n
n
n 的取值范围决定了输出序列
y
[
n
]
y[n]
y[n] 的范围。
- y [ n ] y[n] y[n] 的起始点索引 = x [ n ] x[n] x[n] 的起始点索引 + h [ n ] h[n] h[n] 的起始点索引。
- y [ n ] y[n] y[n] 的结束点索引 = x [ n ] x[n] x[n] 的结束点索引 + h [ n ] h[n] h[n] 的结束点索引。
- 若 x [ n ] x[n] x[n] 长度为 N 1 N_1 N1, h [ n ] h[n] h[n] 长度为 N 2 N_2 N2,则 y [ n ] y[n] y[n] 长度为 N 1 + N 2 − 1 N_1+N_2-1 N1+N2−1。
- 相乘 (Multiplication): 将 x [ k ] x[k] x[k] 与 h [ n − k ] h[n-k] h[n−k] 对应样本值相乘。
- 累加 (Summation): 将相乘后得到的所有样本值累加,得到 y [ n ] y[n] y[n] 在该 n n n 处的值。
-
例:图解法求线性卷积
假设 x [ n ] = { 1 , 2 , 3 ↑ } x[n] = \{1, 2, \underset{\uparrow}{3}\} x[n]={1,2,↑3} (即 x [ − 2 ] = 1 , x [ − 1 ] = 2 , x [ 0 ] = 3 x[-2]=1, x[-1]=2, x[0]=3 x[−2]=1,x[−1]=2,x[0]=3) 和 h [ n ] = { 1 ↑ , 1 } h[n] = \{\underset{\uparrow}{1}, 1\} h[n]={↑1,1} (即 h [ 0 ] = 1 , h [ 1 ] = 1 h[0]=1, h[1]=1 h[0]=1,h[1]=1)。x [ k ] x[k] x[k] 非零范围: k ∈ { − 2 , − 1 , 0 } k \in \{-2, -1, 0\} k∈{−2,−1,0}。起始索引 n x , s t a r t = − 2 n_{x,start}=-2 nx,start=−2, 结束索引 n x , e n d = 0 n_{x,end}=0 nx,end=0。长度 N 1 = 3 N_1=3 N1=3。
h [ k ] h[k] h[k] 非零范围: k ∈ { 0 , 1 } k \in \{0, 1\} k∈{0,1}。起始索引 n h , s t a r t = 0 n_{h,start}=0 nh,start=0, 结束索引 n h , e n d = 1 n_{h,end}=1 nh,end=1。长度 N 2 = 2 N_2=2 N2=2。y [ n ] y[n] y[n] 的起始索引 n y , s t a r t = n x , s t a r t + n h , s t a r t = − 2 + 0 = − 2 n_{y,start} = n_{x,start} + n_{h,start} = -2+0 = -2 ny,start=nx,start+nh,start=−2+0=−2。
y [ n ] y[n] y[n] 的结束索引 n y , e n d = n x , e n d + n h , e n d = 0 + 1 = 1 n_{y,end} = n_{x,end} + n_{h,end} = 0+1 = 1 ny,end=nx,end+nh,end=0+1=1。
y [ n ] y[n] y[n] 的长度 N y = N 1 + N 2 − 1 = 3 + 2 − 1 = 4 N_y = N_1+N_2-1 = 3+2-1 = 4 Ny=N1+N2−1=3+2−1=4。
所以 y [ n ] y[n] y[n] 在 n ∈ { − 2 , − 1 , 0 , 1 } n \in \{-2, -1, 0, 1\} n∈{−2,−1,0,1} 时可能有非零值。-
反转 h [ k ] h[k] h[k]: h [ − k ] h[-k] h[−k]。 h [ 0 ] = 1 h[0]=1 h[0]=1 变为 h [ − 0 ] = 1 h[-0]=1 h[−0]=1, h [ 1 ] = 1 h[1]=1 h[1]=1 变为 h [ − 1 ] = 1 h[-1]=1 h[−1]=1。所以 h [ − k ] h[-k] h[−k] 在 k = 0 k=0 k=0 处为 1 1 1,在 k = − 1 k=-1 k=−1 处为 1 1 1。
-
位移、相乘、累加:
-
n = − 2 n=-2 n=−2: h [ − 2 − k ] h[-2-k] h[−2−k]。要使 h [ − 2 − k ] h[-2-k] h[−2−k] 非零,则 − 2 − k = 0 ⇒ k = − 2 -2-k=0 \Rightarrow k=-2 −2−k=0⇒k=−2 或 − 2 − k = − 1 ⇒ k = − 3 -2-k=-1 \Rightarrow k=-3 −2−k=−1⇒k=−3。
h [ − 2 − k ] h[-2-k] h[−2−k] 在 k = − 2 k=-2 k=−2 处为 h [ 0 ] = 1 h[0]=1 h[0]=1,在 k = − 3 k=-3 k=−3 处为 h [ 1 ] = 1 h[1]=1 h[1]=1。
y [ − 2 ] = ∑ x [ k ] h [ − 2 − k ] = x [ − 2 ] h [ 0 ] = 1 × 1 = 1 y[-2] = \sum x[k]h[-2-k] = x[-2]h[0] = 1 \times 1 = 1 y[−2]=∑x[k]h[−2−k]=x[−2]h[0]=1×1=1。(仅 k = − 2 k=-2 k=−2 处重合) -
n = − 1 n=-1 n=−1: h [ − 1 − k ] h[-1-k] h[−1−k]。要使 h [ − 1 − k ] h[-1-k] h[−1−k] 非零,则 − 1 − k = 0 ⇒ k = − 1 -1-k=0 \Rightarrow k=-1 −1−k=0⇒k=−1 或 − 1 − k = − 1 ⇒ k = − 2 -1-k=-1 \Rightarrow k=-2 −1−k=−1⇒k=−2。
h [ − 1 − k ] h[-1-k] h[−1−k] 在 k = − 1 k=-1 k=−1 处为 h [ 0 ] = 1 h[0]=1 h[0]=1,在 k = − 2 k=-2 k=−2 处为 h [ 1 ] = 1 h[1]=1 h[1]=1。
y [ − 1 ] = ∑ x [ k ] h [ − 1 − k ] = x [ − 1 ] h [ 0 ] + x [ − 2 ] h [ 1 ] = 2 × 1 + 1 × 1 = 3 y[-1] = \sum x[k]h[-1-k] = x[-1]h[0] + x[-2]h[1] = 2 \times 1 + 1 \times 1 = 3 y[−1]=∑x[k]h[−1−k]=x[−1]h[0]+x[−2]h[1]=2×1+1×1=3。 -
n = 0 n=0 n=0: h [ − k ] h[-k] h[−k]。
h [ − k ] h[-k] h[−k] 在 k = 0 k=0 k=0 处为 h [ 0 ] = 1 h[0]=1 h[0]=1,在 k = − 1 k=-1 k=−1 处为 h [ 1 ] = 1 h[1]=1 h[1]=1。
y [ 0 ] = ∑ x [ k ] h [ − k ] = x [ 0 ] h [ 0 ] + x [ − 1 ] h [ 1 ] = 3 × 1 + 2 × 1 = 5 y[0] = \sum x[k]h[-k] = x[0]h[0] + x[-1]h[1] = 3 \times 1 + 2 \times 1 = 5 y[0]=∑x[k]h[−k]=x[0]h[0]+x[−1]h[1]=3×1+2×1=5。 -
n = 1 n=1 n=1: h [ 1 − k ] h[1-k] h[1−k]。要使 h [ 1 − k ] h[1-k] h[1−k] 非零,则 1 − k = 0 ⇒ k = 1 1-k=0 \Rightarrow k=1 1−k=0⇒k=1 或 1 − k = − 1 ⇒ k = 0 1-k=-1 \Rightarrow k=0 1−k=−1⇒k=0。
h [ 1 − k ] h[1-k] h[1−k] 在 k = 1 k=1 k=1 处为 h [ 0 ] = 1 h[0]=1 h[0]=1,在 k = 0 k=0 k=0 处为 h [ 1 ] = 1 h[1]=1 h[1]=1。
y [ 1 ] = ∑ x [ k ] h [ 1 − k ] = x [ 0 ] h [ 1 ] = 3 × 1 = 3 y[1] = \sum x[k]h[1-k] = x[0]h[1] = 3 \times 1 = 3 y[1]=∑x[k]h[1−k]=x[0]h[1]=3×1=3。(仅 k = 0 k=0 k=0 处重合)
-
所以, y [ n ] = { 1 , 3 , 5 ↑ , 3 } y[n] = \{1, 3, \underset{\uparrow}{5}, 3\} y[n]={1,3,↑5,3}。
-
4. 序列的周期性
主要针对正余弦序列
x
[
n
]
=
A
cos
(
ω
0
n
+
ϕ
)
x[n] = A \cos(\omega_0 n + \phi)
x[n]=Acos(ω0n+ϕ) 或
x
[
n
]
=
A
sin
(
ω
0
n
+
ϕ
)
x[n] = A \sin(\omega_0 n + \phi)
x[n]=Asin(ω0n+ϕ)。
判断序列是否有周期,看数字角频率
ω
0
\omega_0
ω0 是否为
2
π
2\pi
2π 的有理数倍,即
ω
0
/
(
2
π
)
=
Q
/
P
\omega_0 / (2\pi) = Q/P
ω0/(2π)=Q/P (Q, P为互质整数)。
或者等价地看
2
π
/
ω
0
2\pi / \omega_0
2π/ω0:
- 2 π / ω 0 = N 2\pi / \omega_0 = N 2π/ω0=N (整数): 序列是周期的,基本周期为 N N N。
-
2
π
/
ω
0
=
P
/
Q
2\pi / \omega_0 = P/Q
2π/ω0=P/Q (有理数,P, Q为互质整数): 序列是周期的,基本周期为
P
P
P。
(更准确地说,序列的周期是 N 0 = m 2 π ω 0 N_0 = m \frac{2\pi}{\omega_0} N0=mω02π,使得 N 0 N_0 N0 为最小正整数。如果 ω 0 2 π = Q P \frac{\omega_0}{2\pi} = \frac{Q}{P} 2πω0=PQ (最简分数),则基本周期 N 0 = P N_0=P N0=P。) - 2 π / ω 0 2\pi / \omega_0 2π/ω0 (无理数): 序列是非周期的。
- 例子:
-
x
[
n
]
=
cos
(
0.2
π
n
)
x[n] = \cos(0.2\pi n)
x[n]=cos(0.2πn):
ω
0
=
0.2
π
\omega_0 = 0.2\pi
ω0=0.2π。
ω
0
/
(
2
π
)
=
0.2
π
/
(
2
π
)
=
1
/
5
\omega_0/(2\pi) = 0.2\pi / (2\pi) = 1/5
ω0/(2π)=0.2π/(2π)=1/5。
Q
=
1
,
P
=
5
Q=1, P=5
Q=1,P=5。基本周期为
P
=
5
P=5
P=5。
(或者 2 π / ω 0 = 2 π / ( 0.2 π ) = 10 2\pi / \omega_0 = 2\pi / (0.2\pi) = 10 2π/ω0=2π/(0.2π)=10。这里 P / Q = 10 / 1 P/Q = 10/1 P/Q=10/1,周期为10。注意: ω 0 / ( 2 π ) = 1 / 10 \omega_0/(2\pi) = 1/10 ω0/(2π)=1/10。周期是10。
让我们统一用 ω 0 / ( 2 π ) = Q / P ⇒ N 0 = P \omega_0/(2\pi) = Q/P \Rightarrow N_0=P ω0/(2π)=Q/P⇒N0=P。
x [ n ] = cos ( 0.2 π n ) x[n] = \cos(0.2\pi n) x[n]=cos(0.2πn): ω 0 = 0.2 π \omega_0 = 0.2\pi ω0=0.2π. ω 0 / ( 2 π ) = 0.2 π / ( 2 π ) = 1 / 5 \omega_0/(2\pi) = 0.2\pi/(2\pi) = 1/5 ω0/(2π)=0.2π/(2π)=1/5. P = 5 P=5 P=5. 周期为 5 5 5。
x [ n ] = cos ( 0.1 π n ) x[n] = \cos(0.1\pi n) x[n]=cos(0.1πn): ω 0 = 0.1 π \omega_0 = 0.1\pi ω0=0.1π. ω 0 / ( 2 π ) = 0.1 π / ( 2 π ) = 1 / 20 \omega_0/(2\pi) = 0.1\pi/(2\pi) = 1/20 ω0/(2π)=0.1π/(2π)=1/20. P = 20 P=20 P=20. 周期为 20 20 20。 - x [ n ] = cos ( n ) x[n] = \cos(n) x[n]=cos(n): ω 0 = 1 \omega_0 = 1 ω0=1。 ω 0 / ( 2 π ) = 1 / ( 2 π ) \omega_0/(2\pi) = 1/(2\pi) ω0/(2π)=1/(2π) (无理数)。非周期序列。
- x [ n ] = cos ( 3 π 5 n ) x[n] = \cos(\frac{3\pi}{5}n) x[n]=cos(53πn): ω 0 = 3 π 5 \omega_0 = \frac{3\pi}{5} ω0=53π. ω 0 / ( 2 π ) = 3 π / 5 2 π = 3 10 \omega_0/(2\pi) = \frac{3\pi/5}{2\pi} = \frac{3}{10} ω0/(2π)=2π3π/5=103. P = 10 P=10 P=10. 周期为 10 10 10。
-
x
[
n
]
=
cos
(
0.2
π
n
)
x[n] = \cos(0.2\pi n)
x[n]=cos(0.2πn):
ω
0
=
0.2
π
\omega_0 = 0.2\pi
ω0=0.2π。
ω
0
/
(
2
π
)
=
0.2
π
/
(
2
π
)
=
1
/
5
\omega_0/(2\pi) = 0.2\pi / (2\pi) = 1/5
ω0/(2π)=0.2π/(2π)=1/5。
Q
=
1
,
P
=
5
Q=1, P=5
Q=1,P=5。基本周期为
P
=
5
P=5
P=5。
5. 采样 (Sampling)
-
采样周期 T T T (Sampling Period): 连续信号采样的时间间隔。
-
采样频率 f s f_s fs (Sampling Frequency): f s = 1 / T f_s = 1/T fs=1/T,单位赫兹 (Hz),表示每秒的采样点数。
-
采样角频率 Ω s \Omega_s Ωs (Sampling Angular Frequency): Ω s = 2 π f s = 2 π / T \Omega_s = 2\pi f_s = 2\pi/T Ωs=2πfs=2π/T,单位弧度每秒 (rad/s)。
-
采样过程:
- 原始连续时间信号 x c ( t ) x_c(t) xc(t)。
- 理想采样: x s ( t ) = x c ( t ) ∑ k = − ∞ ∞ δ ( t − k T ) = ∑ k = − ∞ ∞ x c ( k T ) δ ( t − k T ) x_s(t) = x_c(t) \sum_{k=-\infty}^{\infty} \delta(t-kT) = \sum_{k=-\infty}^{\infty} x_c(kT)\delta(t-kT) xs(t)=xc(t)∑k=−∞∞δ(t−kT)=∑k=−∞∞xc(kT)δ(t−kT)。
- 离散序列: x [ n ] = x c ( n T ) x[n] = x_c(nT) x[n]=xc(nT)。
-
频域分析:
- X c ( j Ω ) X_c(j\Omega) Xc(jΩ): x c ( t ) x_c(t) xc(t) 的傅里叶变换。
-
X
s
(
j
Ω
)
=
1
T
∑
k
=
−
∞
∞
X
c
(
j
(
Ω
−
k
Ω
s
)
)
X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))
Xs(jΩ)=T1∑k=−∞∞Xc(j(Ω−kΩs))。
采样信号的频谱是原始信号频谱以 Ω s \Omega_s Ωs 为周期进行周期延拓,并乘以因子 1 / T 1/T 1/T。 -
X
(
e
j
ω
)
X(e^{j\omega})
X(ejω): 离散序列
x
[
n
]
x[n]
x[n] 的DTFT。
ω
=
Ω
T
\omega = \Omega T
ω=ΩT (归一化数字角频率)。
X ( e j ω ) = X s ( j Ω ) ∣ Ω = ω / T = 1 T ∑ k = − ∞ ∞ X c ( j ( ω T − k 2 π T ) ) X(e^{j\omega}) = X_s(j\Omega)|_{\Omega=\omega/T} = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\frac{\omega}{T} - k\frac{2\pi}{T})) X(ejω)=Xs(jΩ)∣Ω=ω/T=T1∑k=−∞∞Xc(j(Tω−kT2π))
-
采样定理 (Nyquist-Shannon Sampling Theorem):
-
若连续时间信号 x c ( t ) x_c(t) xc(t) 的最高频率分量为 Ω m a x \Omega_{max} Ωmax (或 f m a x = Ω m a x / ( 2 π ) f_{max} = \Omega_{max} / (2\pi) fmax=Ωmax/(2π)),则采样角频率 Ω s \Omega_s Ωs (或采样频率 f s f_s fs) 必须满足 Ω s ≥ 2 Ω m a x \Omega_s \ge 2\Omega_{max} Ωs≥2Ωmax (或 f s ≥ 2 f m a x f_s \ge 2f_{max} fs≥2fmax) 才能保证采样后的信号频谱不发生混叠 (aliasing),从而可以从采样信号或离散序列无失真地恢复原始信号 x c ( t ) x_c(t) xc(t)。
-
2 Ω m a x 2\Omega_{max} 2Ωmax (或 2 f m a x 2f_{max} 2fmax): 奈奎斯特速率 (Nyquist rate)。
-
Ω s / 2 \Omega_s/2 Ωs/2 (或 f s / 2 f_s/2 fs/2): 奈奎斯特频率 (Nyquist frequency)。
-
频谱混叠 (Aliasing):
- 如果 Ω s < 2 Ω m a x \Omega_s < 2\Omega_{max} Ωs<2Ωmax,则 X s ( j Ω ) X_s(j\Omega) Xs(jΩ) 中各周期延拓的频谱会发生重叠,高频分量被误认为低频分量,导致信息失真。
- 如果 Ω s > 2 Ω m a x \Omega_s > 2\Omega_{max} Ωs>2Ωmax,频谱不混叠。
- 如果 Ω s = 2 Ω m a x \Omega_s = 2\Omega_{max} Ωs=2Ωmax,临界采样,理论上不混叠,但实际中难以实现理想滤波器。
-
-
频率轴归一化: ω = Ω T \omega = \Omega T ω=ΩT。将连续角频率 Ω \Omega Ω 映射到离散角频率 ω \omega ω。
如果采样前已发生混叠,则归一化后频谱仍然混叠。
二、题型一:系统的性质判断
判断系统的线性、时不变性、因果性和稳定性。
-
线性 (Linearity)
- 定义:若系统 T { ⋅ } T\{\cdot\} T{⋅} 满足叠加原理,则为线性系统。
- 对任意输入 x 1 [ n ] , x 2 [ n ] x_1[n], x_2[n] x1[n],x2[n] 和任意常数 a , b a, b a,b,若 T { a x 1 [ n ] + b x 2 [ n ] } = a T { x 1 [ n ] } + b T { x 2 [ n ] } T\{ax_1[n] + bx_2[n]\} = aT\{x_1[n]\} + bT\{x_2[n]\} T{ax1[n]+bx2[n]}=aT{x1[n]}+bT{x2[n]},则系统是线性的。
-
时不变性 (Time-Invariance)
- 定义:若输入序列的任意位移引起输出序列相同方式的位移,则为时不变系统。
- 若 y [ n ] = T { x [ n ] } y[n] = T\{x[n]\} y[n]=T{x[n]},则 y [ n − n 0 ] = T { x [ n − n 0 ] } y[n-n_0] = T\{x[n-n_0]\} y[n−n0]=T{x[n−n0]} 对任意整数 n 0 n_0 n0 成立。
-
因果性 (Causality)
- 定义:系统在任意时刻 n 0 n_0 n0 的输出 y [ n 0 ] y[n_0] y[n0] 只取决于当前及以前的输入样本 ( x [ k ] x[k] x[k] for k ≤ n 0 k \le n_0 k≤n0),而与将来的输入样本 ( x [ k ] x[k] x[k] for k > n 0 k > n_0 k>n0) 无关。
-
稳定性 (Stability - BIBO Stability)
- 定义:对任意有界输入 (Bounded Input) 都产生有界输出 (Bounded Output) 的系统,称为BIBO稳定系统。
- 若 ∣ x [ n ] ∣ ≤ M x < ∞ |x[n]| \le M_x < \infty ∣x[n]∣≤Mx<∞ 对所有 n n n 成立,则 ∣ y [ n ] ∣ ≤ M y < ∞ |y[n]| \le M_y < \infty ∣y[n]∣≤My<∞ 对所有 n n n 成立。
- 对于LTI系统,其冲激响应 h [ n ] h[n] h[n] 绝对可和是系统稳定的充要条件: ∑ n = − ∞ ∞ ∣ h [ n ] ∣ < ∞ \sum_{n=-\infty}^{\infty} |h[n]| < \infty ∑n=−∞∞∣h[n]∣<∞。
-
例:判断系统 y [ n ] = x [ − n ] y[n] = x[-n] y[n]=x[−n] 的性质
-
稳定性:
设输入 x [ n ] x[n] x[n] 有界,即 ∣ x [ n ] ∣ ≤ M x < ∞ |x[n]| \le M_x < \infty ∣x[n]∣≤Mx<∞ 对所有 n n n。
则输出 ∣ y [ n ] ∣ = ∣ x [ − n ] ∣ |y[n]| = |x[-n]| ∣y[n]∣=∣x[−n]∣。由于 − n -n −n 只是索引的变化,它仍然会取遍所有整数索引,所以 x [ − n ] x[-n] x[−n] 的值集合与 x [ n ] x[n] x[n] 的值集合相同。因此 ∣ x [ − n ] ∣ ≤ M x < ∞ |x[-n]| \le M_x < \infty ∣x[−n]∣≤Mx<∞。
所以,系统是 稳定 的。 -
因果性:
考虑 n = − 1 n=-1 n=−1, y [ − 1 ] = x [ − ( − 1 ) ] = x [ 1 ] y[-1] = x[-(-1)] = x[1] y[−1]=x[−(−1)]=x[1]。输出 y [ − 1 ] y[-1] y[−1] 取决于将来的输入 x [ 1 ] x[1] x[1] (因为 1 > − 1 1 > -1 1>−1)。
由于存在输出取决于将来输入的情况(例如,当 n < 0 n<0 n<0 时, y [ n ] = x [ − n ] y[n]=x[-n] y[n]=x[−n],此时 − n > n -n > n −n>n),
所以,系统是 非因果 的。 -
线性:
令输入为 x a [ n ] = a x 1 [ n ] + b x 2 [ n ] x_a[n] = a x_1[n] + b x_2[n] xa[n]=ax1[n]+bx2[n]。
系统对 x a [ n ] x_a[n] xa[n] 的响应为 T { x a [ n ] } = x a [ − n ] = a x 1 [ − n ] + b x 2 [ − n ] T\{x_a[n]\} = x_a[-n] = a x_1[-n] + b x_2[-n] T{xa[n]}=xa[−n]=ax1[−n]+bx2[−n]。
分别考虑 y 1 [ n ] = T { x 1 [ n ] } = x 1 [ − n ] y_1[n] = T\{x_1[n]\} = x_1[-n] y1[n]=T{x1[n]}=x1[−n] 和 y 2 [ n ] = T { x 2 [ n ] } = x 2 [ − n ] y_2[n] = T\{x_2[n]\} = x_2[-n] y2[n]=T{x2[n]}=x2[−n]。
则 a y 1 [ n ] + b y 2 [ n ] = a x 1 [ − n ] + b x 2 [ − n ] a y_1[n] + b y_2[n] = a x_1[-n] + b x_2[-n] ay1[n]+by2[n]=ax1[−n]+bx2[−n]。
因为 T { a x 1 [ n ] + b x 2 [ n ] } = a T { x 1 [ n ] } + b T { x 2 [ n ] } T\{a x_1[n] + b x_2[n]\} = a T\{x_1[n]\} + b T\{x_2[n]\} T{ax1[n]+bx2[n]}=aT{x1[n]}+bT{x2[n]},
所以,系统是 线性 的。 -
时不变性:
令 y [ n ] = T { x [ n ] } = x [ − n ] y[n] = T\{x[n]\} = x[-n] y[n]=T{x[n]}=x[−n]。
输出移位: y [ n − n 0 ] = x [ − ( n − n 0 ) ] = x [ − n + n 0 ] y[n-n_0] = x[-(n-n_0)] = x[-n+n_0] y[n−n0]=x[−(n−n0)]=x[−n+n0]。
输入移位:令 x ′ [ n ] = x [ n − n 0 ] x'[n] = x[n-n_0] x′[n]=x[n−n0]。
系统对移位输入的响应: T { x ′ [ n ] } = x ′ [ − n ] = x [ − n − n 0 ] T\{x'[n]\} = x'[-n] = x[-n-n_0] T{x′[n]}=x′[−n]=x[−n−n0]。
比较 x [ − n + n 0 ] x[-n+n_0] x[−n+n0] 和 x [ − n − n 0 ] x[-n-n_0] x[−n−n0]。除非 n 0 = 0 n_0=0 n0=0,否则两者一般不相等。
所以,系统是 时变 的。
-
三、题型二:离散时间傅里叶变换 (DTFT) 和 Z 变换
1. 常见序列的DTFT和Z变换及性质
-
DTFT (Discrete-Time Fourier Transform):
- 分析式: X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] e − j ω n X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} X(ejω)=∑n=−∞∞x[n]e−jωn
- 综合式: x [ n ] = 1 2 π ∫ − π π X ( e j ω ) e j ω n d ω x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega x[n]=2π1∫−ππX(ejω)ejωndω
-
Z变换 (Z-Transform):
- 分析式: X ( z ) = ∑ n = − ∞ ∞ x [ n ] z − n X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} X(z)=∑n=−∞∞x[n]z−n
- 综合式: x [ n ] = 1 2 π j ∮ C X ( z ) z n − 1 d z x[n] = \frac{1}{2\pi j} \oint_C X(z)z^{n-1} dz x[n]=2πj1∮CX(z)zn−1dz (围线积分)
-
重要: 务必熟记常见序列的DTFT、Z变换及其收敛域 (ROC),以及DTFT和Z变换的性质(线性、时移、频移/Z域尺度变换、卷积、对称性等)。
- DTFT对称性质 (若
x
[
n
]
x[n]
x[n] 为实序列):
- X ( e j ω ) X(e^{j\omega}) X(ejω) 是共轭对称的: X ( e j ω ) = X ∗ ( e − j ω ) X(e^{j\omega}) = X^*(e^{-j\omega}) X(ejω)=X∗(e−jω)
- ∣ X ( e j ω ) ∣ |X(e^{j\omega})| ∣X(ejω)∣ 是偶对称的: ∣ X ( e j ω ) ∣ = ∣ X ( e − j ω ) ∣ |X(e^{j\omega})| = |X(e^{-j\omega})| ∣X(ejω)∣=∣X(e−jω)∣
- ∠ X ( e j ω ) \angle X(e^{j\omega}) ∠X(ejω) 是奇对称的: ∠ X ( e j ω ) = − ∠ X ( e − j ω ) \angle X(e^{j\omega}) = -\angle X(e^{-j\omega}) ∠X(ejω)=−∠X(e−jω)
- x e [ n ] x_e[n] xe[n] (实偶部) ↔ R e { X ( e j ω ) } \leftrightarrow Re\{X(e^{j\omega})\} ↔Re{X(ejω)} (实部,偶函数)
- x o [ n ] x_o[n] xo[n] (实奇部) ↔ j I m { X ( e j ω ) } \leftrightarrow j Im\{X(e^{j\omega})\} ↔jIm{X(ejω)} (虚部乘以j,奇函数)
- Z变换性质:
- 时移: x [ n − n 0 ] ↔ z − n 0 X ( z ) x[n-n_0] \leftrightarrow z^{-n_0}X(z) x[n−n0]↔z−n0X(z) (ROC不变,可能增加或减少 z = 0 z=0 z=0 或 z = ∞ z=\infty z=∞ 的极点/零点)
- 卷积: x 1 [ n ] ∗ x 2 [ n ] ↔ X 1 ( z ) X 2 ( z ) x_1[n]*x_2[n] \leftrightarrow X_1(z)X_2(z) x1[n]∗x2[n]↔X1(z)X2(z) (ROC为 R 1 ∩ R 2 R_1 \cap R_2 R1∩R2)
- DTFT对称性质 (若
x
[
n
]
x[n]
x[n] 为实序列):
2. 基本概念辨析
- 系统函数 (System Function): H ( z ) H(z) H(z),是系统单位冲激响应 h [ n ] h[n] h[n] 的Z变换。
- 频率响应 (Frequency Response): H ( e j ω ) H(e^{j\omega}) H(ejω),是系统函数 H ( z ) H(z) H(z) 在单位圆 z = e j ω z=e^{j\omega} z=ejω 上的取值。前提是 H ( z ) H(z) H(z) 的收敛域 (ROC) 包含单位圆。
- 单位脉冲响应 (Unit Impulse Response): h [ n ] h[n] h[n],系统对单位脉冲输入 δ [ n ] \delta[n] δ[n] 的响应。
3. 系统差分方程与系统函数的相互转化
- 例:已知差分方程
y
[
n
]
−
0.5
y
[
n
−
1
]
=
x
[
n
]
+
0.2
x
[
n
−
1
]
y[n] - 0.5y[n-1] = x[n] + 0.2x[n-1]
y[n]−0.5y[n−1]=x[n]+0.2x[n−1],求系统函数
H
(
z
)
H(z)
H(z)。
- 对差分方程两边取Z变换: (假设初始条件为零,即求零状态响应对应的系统函数)
Y ( z ) − 0.5 z − 1 Y ( z ) = X ( z ) + 0.2 z − 1 X ( z ) Y(z) - 0.5z^{-1}Y(z) = X(z) + 0.2z^{-1}X(z) Y(z)−0.5z−1Y(z)=X(z)+0.2z−1X(z) - 提取
Y
(
z
)
Y(z)
Y(z) 和
X
(
z
)
X(z)
X(z):
Y ( z ) ( 1 − 0.5 z − 1 ) = X ( z ) ( 1 + 0.2 z − 1 ) Y(z)(1 - 0.5z^{-1}) = X(z)(1 + 0.2z^{-1}) Y(z)(1−0.5z−1)=X(z)(1+0.2z−1) - 求
H
(
z
)
=
Y
(
z
)
/
X
(
z
)
H(z) = Y(z)/X(z)
H(z)=Y(z)/X(z):
H ( z ) = Y ( z ) X ( z ) = 1 + 0.2 z − 1 1 − 0.5 z − 1 H(z) = \frac{Y(z)}{X(z)} = \frac{1 + 0.2z^{-1}}{1 - 0.5z^{-1}} H(z)=X(z)Y(z)=1−0.5z−11+0.2z−1
对于因果系统,ROC为 ∣ z ∣ > 0.5 |z| > 0.5 ∣z∣>0.5。
- 对差分方程两边取Z变换: (假设初始条件为零,即求零状态响应对应的系统函数)
4. 系统稳定性判断 (根据 H ( z ) H(z) H(z))
- 判断依据:LTI系统稳定的充要条件是其系统函数 H ( z ) H(z) H(z) 的收敛域 (ROC) 包含单位圆 ∣ z ∣ = 1 |z|=1 ∣z∣=1。
- 对于因果LTI系统:
- ROC为 ∣ z ∣ > ∣ p m a x ∣ |z| > |p_{max}| ∣z∣>∣pmax∣,其中 p m a x p_{max} pmax 是模最大的极点。
- 若所有极点都位于单位圆内 (即 ∣ p k ∣ < 1 |p_k|<1 ∣pk∣<1 for all k k k),则ROC为 ∣ z ∣ > ∣ p m a x ∣ |z|>|p_{max}| ∣z∣>∣pmax∣ (其中 ∣ p m a x ∣ < 1 |p_{max}|<1 ∣pmax∣<1) 必然包含单位圆,系统稳定。
5. 系统零极点图绘制
-
步骤:
- 将系统函数
H
(
z
)
H(z)
H(z) 化简为分子分母均为
z
z
z 的多项式乘积形式,通常表示为:
H ( z ) = K z l ∏ ( z − z i ) ∏ ( z − p k ) 或 H ( z ) = K ′ ∏ ( 1 − z i z − 1 ) ∏ ( 1 − p k z − 1 ) H(z) = K z^l \frac{\prod (z-z_i)}{\prod (z-p_k)} \quad \text{或} \quad H(z) = K' \frac{\prod (1-z_i z^{-1})}{\prod (1-p_k z^{-1})} H(z)=Kzl∏(z−pk)∏(z−zi)或H(z)=K′∏(1−pkz−1)∏(1−ziz−1)
(注意 z − 1 z^{-1} z−1 形式时,零点是 z i z_i zi,极点是 p k p_k pk。若为 z z z 的正幂次形式,零点是 z i z_i zi,极点是 p k p_k pk) - 零点 (Zeros): 使分子为零的 z z z 值 (图中用 ‘o’ 表示)。
- 极点 (Poles): 使分母为零的 z z z 值 (图中用 ‘x’ 表示)。
- 多阶零/极点: 需标注阶数。
- 处理
z
=
0
z=0
z=0 或
z
=
∞
z=\infty
z=∞ 处的零极点:
将 H ( z ) H(z) H(z) 写成 z z z 的正幂次形式 H ( z ) = K z l ∏ i = 1 M 0 ( z − z i ) ∏ k = 1 N 0 ( z − p k ) H(z) = K z^l \frac{\prod_{i=1}^{M_0} (z-z_i)}{\prod_{k=1}^{N_0} (z-p_k)} H(z)=Kzl∏k=1N0(z−pk)∏i=1M0(z−zi),其中 z i ≠ 0 , p k ≠ 0 z_i \neq 0, p_k \neq 0 zi=0,pk=0。
总零点数 = M 0 + ( 在 z = 0 处的零点阶数 ) + ( 在 z = ∞ 处的零点阶数 ) M_0 + (\text{在} z=0 \text{处的零点阶数}) + (\text{在} z=\infty \text{处的零点阶数}) M0+(在z=0处的零点阶数)+(在z=∞处的零点阶数)
总极点数 = N 0 + ( 在 z = 0 处的极点阶数 ) + ( 在 z = ∞ 处的极点阶数 ) N_0 + (\text{在} z=0 \text{处的极点阶数}) + (\text{在} z=\infty \text{处的极点阶数}) N0+(在z=0处的极点阶数)+(在z=∞处的极点阶数)
总零点数 = 总极点数。
若 l > 0 l>0 l>0,则在 z = 0 z=0 z=0 处有 l l l 阶零点。若 l < 0 l<0 l<0,则在 z = 0 z=0 z=0 处有 ∣ l ∣ |l| ∣l∣ 阶极点。
令 M = M 0 + l M = M_0+l M=M0+l (分子总次数), N = N 0 N=N_0 N=N0 (分母总次数)。
若 M > N M>N M>N,则在 z = ∞ z=\infty z=∞ 处有 M − N M-N M−N 阶零点。
若 N > M N>M N>M,则在 z = ∞ z=\infty z=∞ 处有 N − M N-M N−M 阶极点。
- 将系统函数
H
(
z
)
H(z)
H(z) 化简为分子分母均为
z
z
z 的多项式乘积形式,通常表示为:
-
例: H ( z ) = z − 1 ( 1 − 0.5 z − 1 ) ( 1 − 2 z − 1 ) H(z) = \frac{z^{-1}}{(1-0.5z^{-1})(1-2z^{-1})} H(z)=(1−0.5z−1)(1−2z−1)z−1,画出零极点图。
- 化简为
z
z
z 的正幂次形式:
H ( z ) = z − 1 ⋅ z 2 ( 1 − 0.5 z − 1 ) ( 1 − 2 z − 1 ) ⋅ z 2 = z ( z − 0.5 ) ( z − 2 ) H(z) = \frac{z^{-1} \cdot z^2}{(1-0.5z^{-1})(1-2z^{-1}) \cdot z^2} = \frac{z}{(z-0.5)(z-2)} H(z)=(1−0.5z−1)(1−2z−1)⋅z2z−1⋅z2=(z−0.5)(z−2)z - 有限非零零点: 分子 z = 0 ⇒ z=0 \Rightarrow z=0⇒ 在 z = 0 z=0 z=0 处有一个零点。
- 有限非零极点: 分母 ( z − 0.5 ) ( z − 2 ) = 0 ⇒ (z-0.5)(z-2)=0 \Rightarrow (z−0.5)(z−2)=0⇒ 极点在 z = 0.5 z=0.5 z=0.5 和 z = 2 z=2 z=2。
-
z
=
∞
z=\infty
z=∞ 处的零极点:
分子 z z z 的最高次幂为1 ( M = 1 M=1 M=1),分母 z z z 的最高次幂为2 ( N = 2 N=2 N=2)。
因为 N > M N > M N>M,所以在 z = ∞ z=\infty z=∞ 处有 N − M = 2 − 1 = 1 N-M = 2-1=1 N−M=2−1=1 阶极点。
检查: 零点数:1 (在 z = 0 z=0 z=0)。极点数:2 (在 z = 0.5 , z = 2 z=0.5, z=2 z=0.5,z=2) + 1 (在 z = ∞ z=\infty z=∞) = 3。
这不符合零极点个数相等的原则。
让我们重新审视 H ( z ) = z ( z − 0.5 ) ( z − 2 ) H(z) = \frac{z}{(z-0.5)(z-2)} H(z)=(z−0.5)(z−2)z。
分子阶数 M = 1 M=1 M=1 (零点 z 1 = 0 z_1=0 z1=0)。
分母阶数 N = 2 N=2 N=2 (极点 p 1 = 0.5 , p 2 = 2 p_1=0.5, p_2=2 p1=0.5,p2=2)。
当 N > M N > M N>M 时,在 z = ∞ z=\infty z=∞ 处有 N − M = 2 − 1 = 1 N-M = 2-1=1 N−M=2−1=1 阶零点。
所以:
零点: z = 0 z=0 z=0 (1个), z = ∞ z=\infty z=∞ (1个)。
极点: z = 0.5 z=0.5 z=0.5 (1个), z = 2 z=2 z=2 (1个)。
总零点数 = 2,总极点数 = 2。这样才对。
- 化简为
z
z
z 的正幂次形式:
6. 幅频和相频特性图的画法 (几何法)
从零极点图估算
H
(
e
j
ω
)
H(e^{j\omega})
H(ejω)。单位圆上一点
e
j
ω
e^{j\omega}
ejω (考察点) 从
ω
=
0
\omega=0
ω=0 沿逆时针转到
ω
=
2
π
\omega=2\pi
ω=2π。
H
(
e
j
ω
)
=
K
∏
i
=
1
M
(
e
j
ω
−
z
i
)
∏
k
=
1
N
(
e
j
ω
−
p
k
)
H(e^{j\omega}) = K \frac{\prod_{i=1}^{M} (e^{j\omega}-z_i)}{\prod_{k=1}^{N} (e^{j\omega}-p_k)}
H(ejω)=K∏k=1N(ejω−pk)∏i=1M(ejω−zi) (这里
z
i
,
p
k
z_i, p_k
zi,pk 是有限非零零极点)
-
幅频响应 ∣ H ( e j ω ) ∣ |H(e^{j\omega})| ∣H(ejω)∣:
∣ H ( e j ω ) ∣ = ∣ K ∣ ∏ i = 1 M ∣ e j ω − z i ∣ ∏ k = 1 N ∣ e j ω − p k ∣ |H(e^{j\omega})| = |K| \frac{\prod_{i=1}^{M} |e^{j\omega}-z_i|}{\prod_{k=1}^{N} |e^{j\omega}-p_k|} ∣H(ejω)∣=∣K∣∏k=1N∣ejω−pk∣∏i=1M∣ejω−zi∣
∣ e j ω − z i ∣ |e^{j\omega}-z_i| ∣ejω−zi∣ 是从零点 z i z_i zi 到单位圆上考察点 e j ω e^{j\omega} ejω 的向量长度。
∣ e j ω − p k ∣ |e^{j\omega}-p_k| ∣ejω−pk∣ 是从极点 p k p_k pk 到单位圆上考察点 e j ω e^{j\omega} ejω 的向量长度。
当考察点靠近零点时,幅度减小;靠近极点时,幅度增大。 -
相频响应 ∠ H ( e j ω ) \angle H(e^{j\omega}) ∠H(ejω):
∠ H ( e j ω ) = ∠ K + ∑ i = 1 M ∠ ( e j ω − z i ) − ∑ k = 1 N ∠ ( e j ω − p k ) \angle H(e^{j\omega}) = \angle K + \sum_{i=1}^{M} \angle(e^{j\omega}-z_i) - \sum_{k=1}^{N} \angle(e^{j\omega}-p_k) ∠H(ejω)=∠K+∑i=1M∠(ejω−zi)−∑k=1N∠(ejω−pk)
∠ ( e j ω − z i ) \angle(e^{j\omega}-z_i) ∠(ejω−zi) 是从零点 z i z_i zi 到考察点 e j ω e^{j\omega} ejω 的向量与实轴正向的夹角。
∠ ( e j ω − p k ) \angle(e^{j\omega}-p_k) ∠(ejω−pk) 是从极点 p k p_k pk 到考察点 e j ω e^{j\omega} ejω 的向量与实轴正向的夹角。
7. Z反变换求法 (部分分式展开法)
- 前提: 保证 H ( z ) H(z) H(z) 为关于 z − 1 z^{-1} z−1 的真分式,即分母中 z − 1 z^{-1} z−1 的最高次幂大于分子中 z − 1 z^{-1} z−1 的最高次幂。如果不是,先进行长除法,分离出常数项或 z z z 的正幂次项。
- 步骤:
-
无重根情况:
H ( z ) = ∑ k = 1 N A k 1 − p k z − 1 H(z) = \sum_{k=1}^{N} \frac{A_k}{1-p_k z^{-1}} H(z)=∑k=1N1−pkz−1Ak
A k = [ ( 1 − p k z − 1 ) H ( z ) ] z − 1 = 1 / p k A_k = [(1-p_k z^{-1})H(z)]_{z^{-1}=1/p_k} Ak=[(1−pkz−1)H(z)]z−1=1/pk (或者 A k = [ ( 1 − p k z − 1 ) H ( z ) ] z = p k A_k = [(1-p_k z^{-1})H(z)]_{z=p_k} Ak=[(1−pkz−1)H(z)]z=pk,但前者更方便)
然后根据收敛域查表得到 h [ n ] h[n] h[n]。- 若ROC为 ∣ z ∣ > ∣ p k ∣ |z|>|p_k| ∣z∣>∣pk∣ (右边序列),则 A k 1 − p k z − 1 ↔ A k ( p k ) n u [ n ] \frac{A_k}{1-p_k z^{-1}} \leftrightarrow A_k (p_k)^n u[n] 1−pkz−1Ak↔Ak(pk)nu[n]
- 若ROC为 ∣ z ∣ < ∣ p k ∣ |z|<|p_k| ∣z∣<∣pk∣ (左边序列),则 A k 1 − p k z − 1 ↔ − A k ( p k ) n u [ − n − 1 ] \frac{A_k}{1-p_k z^{-1}} \leftrightarrow -A_k (p_k)^n u[-n-1] 1−pkz−1Ak↔−Ak(pk)nu[−n−1]
-
有重根情况:
若 H ( z ) H(z) H(z) 有 m m m 阶极点 p 0 p_0 p0 (对应项 ( 1 − p 0 z − 1 ) m (1-p_0 z^{-1})^m (1−p0z−1)m),则部分分式展开包含项:
C 1 1 − p 0 z − 1 + C 2 ( 1 − p 0 z − 1 ) 2 + ⋯ + C m ( 1 − p 0 z − 1 ) m \frac{C_1}{1-p_0 z^{-1}} + \frac{C_2}{(1-p_0 z^{-1})^2} + \dots + \frac{C_m}{(1-p_0 z^{-1})^m} 1−p0z−1C1+(1−p0z−1)2C2+⋯+(1−p0z−1)mCm
令 F ( z ) = ( 1 − p 0 z − 1 ) m H ( z ) F(z) = (1-p_0 z^{-1})^m H(z) F(z)=(1−p0z−1)mH(z)。
C m = [ F ( z ) ] z − 1 = 1 / p 0 C_m = [F(z)]_{z^{-1}=1/p_0} Cm=[F(z)]z−1=1/p0
C m − 1 = 1 1 ! d d ( z − 1 ) [ F ( z ) ] z − 1 = 1 / p 0 C_{m-1} = \frac{1}{1!} \frac{d}{d(z^{-1})} [F(z)]_{z^{-1}=1/p_0} Cm−1=1!1d(z−1)d[F(z)]z−1=1/p0
…
C m − j = 1 j ! d j d ( z − 1 ) j [ F ( z ) ] z − 1 = 1 / p 0 C_{m-j} = \frac{1}{j!} \frac{d^j}{d(z^{-1})^j} [F(z)]_{z^{-1}=1/p_0} Cm−j=j!1d(z−1)jdj[F(z)]z−1=1/p0
查表 (以右边序列为例,ROC: ∣ z ∣ > ∣ p 0 ∣ |z|>|p_0| ∣z∣>∣p0∣):- A ( p 0 ) n u [ n ] ↔ A 1 − p 0 z − 1 A(p_0)^n u[n] \leftrightarrow \frac{A}{1-p_0 z^{-1}} A(p0)nu[n]↔1−p0z−1A
- A ( n + 1 ) ( p 0 ) n u [ n ] ↔ A ( 1 − p 0 z − 1 ) 2 A(n+1)(p_0)^n u[n] \leftrightarrow \frac{A}{(1-p_0 z^{-1})^2} A(n+1)(p0)nu[n]↔(1−p0z−1)2A
- A ( n + m − 1 ) ! n ! ( m − 1 ) ! ( p 0 ) n u [ n ] = A C n + m − 1 m − 1 ( p 0 ) n u [ n ] ↔ A ( 1 − p 0 z − 1 ) m A \frac{(n+m-1)!}{n!(m-1)!} (p_0)^n u[n] = A C_{n+m-1}^{m-1} (p_0)^n u[n] \leftrightarrow \frac{A}{(1-p_0 z^{-1})^m} An!(m−1)!(n+m−1)!(p0)nu[n]=ACn+m−1m−1(p0)nu[n]↔(1−p0z−1)mA
-
8. 零输入、零状态和全响应
-
全响应 y [ n ] y[n] y[n] = 零输入响应 y z i [ n ] y_{zi}[n] yzi[n] + 零状态响应 y z s [ n ] y_{zs}[n] yzs[n]
-
零输入响应 (Zero-Input Response, y z i [ n ] y_{zi}[n] yzi[n]): 系统初始条件不为零,外加激励信号 x [ n ] x[n] x[n] 为零时产生的输出响应。
- 求解方法:通常用时域法。由差分方程的齐次解形式确定,系数由初始条件定出。
Q ( E ) y [ n ] = 0 ⇒ Q ( λ ) = 0 Q(E)y[n]=0 \Rightarrow Q(\lambda)=0 Q(E)y[n]=0⇒Q(λ)=0 (特征方程),解出特征根 λ i \lambda_i λi。
y z i [ n ] = ∑ C i ( λ i ) n y_{zi}[n] = \sum C_i (\lambda_i)^n yzi[n]=∑Ci(λi)n (无重根时)。
- 求解方法:通常用时域法。由差分方程的齐次解形式确定,系数由初始条件定出。
-
零状态响应 (Zero-State Response, y z s [ n ] y_{zs}[n] yzs[n]): 系统初始条件为零,在外加信号激励 x [ n ] x[n] x[n] 下产生的输出响应。
- 求解方法:通常用频域法 (Z变换)。 Y z s ( z ) = H ( z ) X ( z ) Y_{zs}(z) = H(z)X(z) Yzs(z)=H(z)X(z),然后求Z反变换。
-
自由响应 (Free Response / Natural Response): 由系统本身特性(特征根)决定的响应,形式与齐次解相同。
-
强迫响应 (Forced Response / Particular Solution): 与外加激励信号形式有关的响应。
-
关系:
- y z i [ n ] y_{zi}[n] yzi[n] 完全是自由响应。
- y z s [ n ] y_{zs}[n] yzs[n] 包含自由响应部分和强迫响应部分。
-
例:已知系统差分方程 y [ n ] − 3 4 y [ n − 1 ] + 1 8 y [ n − 2 ] = x [ n ] y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = x[n] y[n]−43y[n−1]+81y[n−2]=x[n]。输入 x [ n ] = ( 0.5 ) n u [ n ] x[n] = (0.5)^n u[n] x[n]=(0.5)nu[n],初始条件 y [ − 1 ] = 1 , y [ − 2 ] = 0 y[-1]=1, y[-2]=0 y[−1]=1,y[−2]=0。求因果系统的完全响应 y [ n ] y[n] y[n]。
-
系统函数 H ( z ) H(z) H(z) (用于求零状态响应):
H ( z ) = 1 1 − 3 4 z − 1 + 1 8 z − 2 = 1 ( 1 − 1 2 z − 1 ) ( 1 − 1 4 z − 1 ) H(z) = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} = \frac{1}{(1-\frac{1}{2}z^{-1})(1-\frac{1}{4}z^{-1})} H(z)=1−43z−1+81z−21=(1−21z−1)(1−41z−1)1 -
零输入响应 y z i [ n ] y_{zi}[n] yzi[n] (时域法):
特征方程: λ 2 − 3 4 λ + 1 8 = 0 ⇒ ( λ − 1 2 ) ( λ − 1 4 ) = 0 \lambda^2 - \frac{3}{4}\lambda + \frac{1}{8} = 0 \Rightarrow (\lambda-\frac{1}{2})(\lambda-\frac{1}{4})=0 λ2−43λ+81=0⇒(λ−21)(λ−41)=0
特征根: λ 1 = 1 / 2 , λ 2 = 1 / 4 \lambda_1 = 1/2, \lambda_2 = 1/4 λ1=1/2,λ2=1/4
y z i [ n ] = C 1 ( 1 / 2 ) n + C 2 ( 1 / 4 ) n y_{zi}[n] = C_1(1/2)^n + C_2(1/4)^n yzi[n]=C1(1/2)n+C2(1/4)n
利用初始条件 y [ − 1 ] = 1 , y [ − 2 ] = 0 y[-1]=1, y[-2]=0 y[−1]=1,y[−2]=0 (这些是全响应的初始条件,在求零输入响应时,我们假设 x [ n ] = 0 x[n]=0 x[n]=0 for n ≥ 0 n \ge 0 n≥0,并用这些初始条件来确定 y z i [ n ] y_{zi}[n] yzi[n] for n ≥ 0 n \ge 0 n≥0)
对于 n ≥ 0 n \ge 0 n≥0,当 x [ n ] = 0 x[n]=0 x[n]=0 时, y [ n ] = 3 4 y [ n − 1 ] − 1 8 y [ n − 2 ] y[n] = \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2] y[n]=43y[n−1]−81y[n−2]。
y [ 0 ] = 3 4 y [ − 1 ] − 1 8 y [ − 2 ] = 3 4 ( 1 ) − 1 8 ( 0 ) = 3 4 y[0] = \frac{3}{4}y[-1] - \frac{1}{8}y[-2] = \frac{3}{4}(1) - \frac{1}{8}(0) = \frac{3}{4} y[0]=43y[−1]−81y[−2]=43(1)−81(0)=43
y [ 1 ] = 3 4 y [ 0 ] − 1 8 y [ − 1 ] = 3 4 ( 3 4 ) − 1 8 ( 1 ) = 9 16 − 2 16 = 7 16 y[1] = \frac{3}{4}y[0] - \frac{1}{8}y[-1] = \frac{3}{4}(\frac{3}{4}) - \frac{1}{8}(1) = \frac{9}{16} - \frac{2}{16} = \frac{7}{16} y[1]=43y[0]−81y[−1]=43(43)−81(1)=169−162=167
代入 y z i [ n ] y_{zi}[n] yzi[n] 的通解 (适用于 n ≥ 0 n \ge 0 n≥0):
y z i [ 0 ] = C 1 + C 2 = 3 / 4 y_{zi}[0] = C_1 + C_2 = 3/4 yzi[0]=C1+C2=3/4
y z i [ 1 ] = ( 1 / 2 ) C 1 + ( 1 / 4 ) C 2 = 7 / 16 ⇒ 2 C 1 + C 2 = 7 / 4 y_{zi}[1] = (1/2)C_1 + (1/4)C_2 = 7/16 \Rightarrow 2C_1 + C_2 = 7/4 yzi[1]=(1/2)C1+(1/4)C2=7/16⇒2C1+C2=7/4
解方程组:
( 2 C 1 + C 2 ) − ( C 1 + C 2 ) = 7 / 4 − 3 / 4 ⇒ C 1 = 4 / 4 = 1 (2C_1 + C_2) - (C_1 + C_2) = 7/4 - 3/4 \Rightarrow C_1 = 4/4 = 1 (2C1+C2)−(C1+C2)=7/4−3/4⇒C1=4/4=1
C 2 = 3 / 4 − C 1 = 3 / 4 − 1 = − 1 / 4 C_2 = 3/4 - C_1 = 3/4 - 1 = -1/4 C2=3/4−C1=3/4−1=−1/4
所以, y z i [ n ] = ( 1 / 2 ) n u [ n ] − 1 4 ( 1 / 4 ) n u [ n ] y_{zi}[n] = (1/2)^n u[n] - \frac{1}{4}(1/4)^n u[n] yzi[n]=(1/2)nu[n]−41(1/4)nu[n] -
零状态响应 y z s [ n ] y_{zs}[n] yzs[n] (频域法):
X ( z ) = Z { ( 0.5 ) n u [ n ] } = 1 1 − 0.5 z − 1 X(z) = Z\{(0.5)^n u[n]\} = \frac{1}{1-0.5z^{-1}} X(z)=Z{(0.5)nu[n]}=1−0.5z−11
Y z s ( z ) = H ( z ) X ( z ) = 1 ( 1 − 1 2 z − 1 ) ( 1 − 1 4 z − 1 ) ⋅ 1 1 − 1 2 z − 1 = 1 ( 1 − 1 2 z − 1 ) 2 ( 1 − 1 4 z − 1 ) Y_{zs}(z) = H(z)X(z) = \frac{1}{(1-\frac{1}{2}z^{-1})(1-\frac{1}{4}z^{-1})} \cdot \frac{1}{1-\frac{1}{2}z^{-1}} = \frac{1}{(1-\frac{1}{2}z^{-1})^2 (1-\frac{1}{4}z^{-1})} Yzs(z)=H(z)X(z)=(1−21z−1)(1−41z−1)1⋅1−21z−11=(1−21z−1)2(1−41z−1)1
部分分式展开:
Y z s ( z ) = A 1 1 − 1 2 z − 1 + A 2 ( 1 − 1 2 z − 1 ) 2 + B 1 − 1 4 z − 1 Y_{zs}(z) = \frac{A_1}{1-\frac{1}{2}z^{-1}} + \frac{A_2}{(1-\frac{1}{2}z^{-1})^2} + \frac{B}{1-\frac{1}{4}z^{-1}} Yzs(z)=1−21z−1A1+(1−21z−1)2A2+1−41z−1B
B = [ ( 1 − 1 4 z − 1 ) Y z s ( z ) ] z − 1 = 4 = 1 ( 1 − 1 2 ( 4 ) ) 2 = 1 ( 1 − 2 ) 2 = 1 B = [(1-\frac{1}{4}z^{-1})Y_{zs}(z)]_{z^{-1}=4} = \frac{1}{(1-\frac{1}{2}(4))^2} = \frac{1}{(1-2)^2} = 1 B=[(1−41z−1)Yzs(z)]z−1=4=(1−21(4))21=(1−2)21=1
A 2 = [ ( 1 − 1 2 z − 1 ) 2 Y z s ( z ) ] z − 1 = 2 = 1 1 − 1 4 ( 2 ) = 1 1 − 1 / 2 = 2 A_2 = [(1-\frac{1}{2}z^{-1})^2 Y_{zs}(z)]_{z^{-1}=2} = \frac{1}{1-\frac{1}{4}(2)} = \frac{1}{1-1/2} = 2 A2=[(1−21z−1)2Yzs(z)]z−1=2=1−41(2)1=1−1/21=2
求 A 1 A_1 A1: 令 z − 1 = 0 z^{-1}=0 z−1=0 (或 z → ∞ z \to \infty z→∞)
Y z s ( 0 ) = 1 = A 1 + A 2 + B = A 1 + 2 + 1 ⇒ A 1 = 1 − 3 = − 2 Y_{zs}(0) = 1 = A_1 + A_2 + B = A_1 + 2 + 1 \Rightarrow A_1 = 1-3 = -2 Yzs(0)=1=A1+A2+B=A1+2+1⇒A1=1−3=−2
Y z s ( z ) = − 2 1 − 1 2 z − 1 + 2 ( 1 − 1 2 z − 1 ) 2 + 1 1 − 1 4 z − 1 Y_{zs}(z) = \frac{-2}{1-\frac{1}{2}z^{-1}} + \frac{2}{(1-\frac{1}{2}z^{-1})^2} + \frac{1}{1-\frac{1}{4}z^{-1}} Yzs(z)=1−21z−1−2+(1−21z−1)22+1−41z−11
y z s [ n ] = ( − 2 ( 0.5 ) n + 2 ( n + 1 ) ( 0.5 ) n + ( 0.25 ) n ) u [ n ] y_{zs}[n] = (-2(0.5)^n + 2(n+1)(0.5)^n + (0.25)^n) u[n] yzs[n]=(−2(0.5)n+2(n+1)(0.5)n+(0.25)n)u[n]
y z s [ n ] = ( 2 n ( 0.5 ) n + ( 0.25 ) n ) u [ n ] y_{zs}[n] = (2n(0.5)^n + (0.25)^n) u[n] yzs[n]=(2n(0.5)n+(0.25)n)u[n] -
完全响应 y [ n ] y[n] y[n] (for n ≥ 0 n \ge 0 n≥0):
y [ n ] = y z i [ n ] + y z s [ n ] y[n] = y_{zi}[n] + y_{zs}[n] y[n]=yzi[n]+yzs[n]
y [ n ] = [ ( 0.5 ) n − 1 4 ( 0.25 ) n ] + [ 2 n ( 0.5 ) n + ( 0.25 ) n ] y[n] = [(0.5)^n - \frac{1}{4}(0.25)^n] + [2n(0.5)^n + (0.25)^n] y[n]=[(0.5)n−41(0.25)n]+[2n(0.5)n+(0.25)n] for n ≥ 0 n \ge 0 n≥0
y [ n ] = ( 1 + 2 n ) ( 0.5 ) n + 3 4 ( 0.25 ) n y[n] = (1+2n)(0.5)^n + \frac{3}{4}(0.25)^n y[n]=(1+2n)(0.5)n+43(0.25)n, for n ≥ 0 n \ge 0 n≥0.
-
续【DSP数字信号处理】期末复习笔记(二)。