目录
弯月在哪里?
怎么看也不像书上说的,两个弯月形状。
但是源代码运行后就是这个样子,凑合着用吧。
实验课本源代码,运行后效果:
第三章 Logistics回归,用这个数据集没问题。
第四章 FNN二分类,用这个数据集,看不出Logistics回归与FNN的区别。
感觉存在一些问题。
真正的弯月
找到一份未运行过的源代码,发现这张图:
这才是“两个弯月形状” !书上的代码肯定是出了问题了,导致运行后,弯月不见了。
一位同学的弯月
班里有细心的同学,做了真正的弯月:
[2022-09-26]神经网络与深度学习第3章-前馈神经网络(part1)_三工修的博客-CSDN博客
适合Logistics与FNN二分类对比的数据集
感觉“假”弯月数据集不妥,是受到这位同学数据集的启发:
HBU-NNDL 实验五 前馈神经网络(1)二分类任务_不是蒋承翰的博客-CSDN博客
感谢以下两位同学
三工修https://blog.csdn.net/LupnisJ
不是蒋承翰https://blog.csdn.net/m0_57215376
没完成实验的同学,建议直接使用“真正弯月”数据集。
已完成实验的同学,不建议删除原来的博文,建议在末尾增加:“修正”,新增分析。
完整记录学习过程。
2022.9.29 更新:
HBU-NNDL 实验五 前馈神经网络(1)二分类任务_不是蒋承翰的博客-CSDN博客
破解“弯月消失之谜”
noise设置的太大
noise设置为0:
噪音加到0.2:
数据集的形状:建议调整成下图样式,效果比较好:
REF:月亮数据预测(决策树和随机森林算法)_对月亮数据训练并微调一个决策树
尝试输出类似分类效果:
鸢尾花数据集、月亮数据集二分类可视化分析_是陆小鹿啊的博客-CSDN博客_二分类结果可视化