使用三层神经网络对月亮数据集分类 手动实现BP神经网络

一、写在前面

1、学习建议

  1. 研究生阶段,某些课程该跳过就跳过,有些课程,教的是1+1=2,考的是计算微积分。这种课程学不着东西,真正学东西还是得自己课下下功夫。总之,经过大学洗练,又进入研究生阶段,大伙儿应该也都渐渐明白,课堂已经不再是我们获取知识的主要手段了。
  2. 我这篇博客里带着对代码的讲解,分段讲解那种,大家可以仔细看看里面的注释。如果发现有错误或者更好的写法或者建议,欢迎在评论区留言交流讨论。
  3. 好好学习,但遇到不顺心、不公平的事儿时,想开点,珍惜生命就是以另一种方式赚到。
  4. 博客的代码里有讲解的注释!但我不希望你是来抄作业的,另外,同时希望你能在参考列表中注明出处。

2、声明

本代码在写作过程中也参考了其他博主,见 四.3.1和 四.3.6 两小节。

二、题目描述

搭建一个可以运行在不同优化器模式下的 3 层神经网络模型(网络层节点数 目分别为:5,2,1),对“月亮”数据集进行分类。

  1. 在不使用优化器的情况下对数据集分类,并可视化表示。
  2. 将优化器设置为具有动量的梯度下降算法,可视化表示分类结果。
  3. 将优化器设置为 Adam 算法,可视化分类结果。
  4. 总结不同算法的分类准确度以及代价曲线的平滑度。

注:以上算法均手动实现,提供数据集读取代码及相关方法代码。
然后题目给出了我们激活函数、前向传播函数、绘制边界函数等,我们需要做的是编写使用不同的优化器进行网络训练,以及结果展示部分的代码。

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import math

def sigmoid(x):
    """
    Compute the sigmoid of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- sigmoid(x)
    """
    s = 1 / (1 + np.exp(-x))
    return s

def relu(x):
    """
    Compute the relu of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- relu(x)
    """
    s = np.maximum(0, x)

    return s

def forward_propagation(X, parameters):
    """
    Implements the forward propagation (and computes the loss) presented in Figure 2.

    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape ()
                    b1 -- bias vector of shape ()
                    W2 -- weight matrix of shape ()
                    b2 -- bias vector of shape ()
                    W3 -- weight matrix of shape ()
                    b3 -- bias vector of shape ()

    Returns:
    loss -- the loss function (vanilla logistic loss)
    """

    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    z1 = np.dot(W1, X) + b1
    a1 = relu(z1)
    z2 = np.dot(W2, a1) + b2
    a2 = relu(z2)
    z3 = np.dot(W3, a2) + b3
    a3 = sigmoid(z3)

    cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)

    return a3, cache

def predict(X, y, parameters):
    """
    This function is used to predict the results of a  n-layer neural network.

    Arguments:
    X -- data set of examples you would like to label
    parameters -- parameters of the trained model

    Returns:
    p -- predictions for the given dataset X
    """

    m = X.shape[1]
    p = np.zeros((1, m), dtype=np.int)

    # Forward propagation
    a3, caches = forward_propagation(X, parameters)

    # convert probas to 0/1 predictions
    for i in range(0, a3.shape[1]):
        if a3[0, i] > 0.5:
            p[0, i] = 1
        else:
            p[0, i] = 0

    # print results

    # print ("predictions: " + str(p[0,:]))
    # print ("true labels: " + str(y[0,:]))
    print("Accuracy: " + str(np.mean((p[0, :] == y[0, :]))))

    return p


def predict_dec(parameters, X):
    """
    Used for plotting decision boundary.

    Arguments:
    parameters -- python dictionary containing your parameters
    X -- input data of size (m, K)

    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """

    # Predict using forward propagation and a classification threshold of 0.5
    a3, cache = forward_propagation(X, parameters)
    predictions = (a3 > 0.5)
    return predictions

def load_dataset(is_plot=True):
    np.random.seed(3)
    train_X, train_Y = sklearn.datasets.make_moons(n_samples=300, noise=.2)  # 300 #0.2
    # Visualize the data
    if is_plot:
        plt.scatter(train_X[:, 0], train_X[:, 1], c=train_Y, s=40, cmap=plt.cm.Spectral);
    train_X = train_X.T
    train_Y = train_Y.reshape((1, train_Y.shape[0]))

    return train_X, train_Y

##可视化分割线
def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=np.squeeze(y), cmap=plt.cm.Spectral)
    plt.show()

##读取数据集代码
train_X, train_Y = load_dataset(is_plot=True)

三、必要知识讲解

1、“月亮”数据集

“月亮”数据集并非天上的月亮,这个题目并不是要求我们使用卷积神经网络对图片分类。而是使用BP神经网络对“月亮数据集”进行分类。月亮数据集是包含若干散点的数据,将散点画出来如下图所示:请添加图片描述
该数据集数据是一系列散点坐标,标签是类别0和1,对应红色上弯钩和蓝色下弯钩数据。由于图形形似“月亮”,所以被称为“月亮数据集”。

sklearn.datasets.make_moons 函数已经为我们提供了生成数据集的函数,调用即可加载数据集(这部分代码在题目中已经给出)。加载的数据集是一个2行n列的数组(题目给定的n为300,接下来就用它了)

2、神经网络结构

首先我们来看一下输入的维度,在load_dataset函数中,加载了月亮数据集,返回到train_Xtrain_Y保存。在load_dataset 函数中,n_samples 设置为300,所以变量 t r a i n _ X ∈ R 2 × 300 {\rm train\_X}\in{\mathcal R}^{2\times300} train_XR2×300 t r a i n _ Y ∈ R 1 × 300 {\rm train\_Y}\in{\mathcal R}^{1\times300} train_YR1×300。 因此,输入层节点数为2,然后按题目要求,隐藏层节点数为5 2,输出层节点数为1。大致结构如下:
在这里插入图片描述

3、数据集分割

读取到的数据含有300个样本点,我们将它分为训练集和测试集,可以使用数据集分割函数,现在这个数据集比较少,手动分割也行。

# 使用数据集分割函数分割数据集
Xtrain, Xtest, Ytrain, Ytest = train_test_split(train_X.T, train_Y.T, test_size=0.1, random_state=100)
# 手动分割数据集
Xtrain = train_X[0:2, 0:270]
Ytrain = train_Y[0:1, 0:270]
Xtest = train_X[0:2 , 271:300]
Ytest = train_Y[0:1 , 271:300]
# 以上两种方法选择一种即可
# 两种方法均设置训练集和测试集比例为 9:1

4、优化器

这里我偷个懒,放个其他博主的博客吧,大伙想了解原理的自行参考
优化器(Optimizer)(SGD、Momentum、AdaGrad、RMSProp、Adam)

四、代码逐步解析

读取数据集并完成分割数据集后,就要写网络并进行训练。基本思路是:设置超参数、初始化网络、初始化优化器、训练网络(包括分割数据批次、前向传播、后向传播、使用优化器更新参数)、预测输出与展示结果

1、设置超参数、初始化全局变量

# 题目要求的层节点数量,输出是一个向量,默认就是1了
n1 = 5
n2 = 2

# 设置参数
EPOCHS = 10000		# 迭代总数
optimizer = 'SGD'	# 通过更改'SGD' 'SGDM' 'ADAM' 来选择优化器,以满足题目要求
learning_rate = 0.1 # 学习率,不要太大也不要太小,太大导致容易发散,太小导致收敛速度慢
mompara = 0.9		# 优化器要用到的系数,在优化器中详解,下同
beta2 = 0.999
epsilon = 1e-8

loss = []			# 用于储存损失值的列表
accuracy = []		# 用于储存准确率的列表

2、初始化优化器及其参数

global s
np.random.seed(3)  # 指定随机种子
n_x, n_y = Xtrain.shape[0], Ytrain.shape[0]	# 神经网络输入层节点数和输出层节点数可以通过数据集拿到
t = 0
v = {}

parameters = initialize_parameters(n_x, n1, n2, n_y)

# 初始化动量
if optimizer == 'SGDM':
    v = initialize_sgdm(parameters)
elif optimizer == 'ADAM':
    v, s = initialize_adam(parameters)
else: pass      # SGD不需要初始化动量

显然,这里面有三个函数待写:initialize_parametersinitialize_sgdminitialize_adam,接下来我们解决掉他们

2.1 initialize_parameters

def initialize_parameters(n_x, n1, n2, n_y):
    """
    参数:
        n_x - 输入层节点的数量      2
        n1,n2 - 隐藏层节点的数量    5 2
        n_y - 输出层节点的数量      1

    返回:
        parameters - 包含参数的字典

    说明:抛开题目要求,如果允许将节点数改变,似效果更好些,大家可以尝试一下,我试了试是这样

    """
    np.random.seed(3)  # 指定一个随机种子

    W1 = np.random.randn(n1, n_x)	# W1 - 输入层 - 隐藏层 1 的权重矩阵
    b1 = np.zeros((n1, 1))		# b1 - 输入层 - 隐藏层 1 的偏置
    W2 = np.random.randn(n2, n1) 	# W2 - 隐藏层1 - 隐藏层2 的权重矩阵
    b2 = np.zeros((n2, 1))		# b2 - 隐藏层1 - 隐藏层2 的偏置
    W3 = np.random.randn(n_y, n2)	# W3 - 隐藏层2 - 输出层的权重矩阵
    b3 = np.zeros((n_y, 1))		# b3 - 隐藏层2 - 输出层的偏置
	
	# 把它们做成字典,方便提取值使用。题目在给出的代码中是使用的字典存储,这里也使用字典存储
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2,
                  "W3": W3,
                  "b3": b3}
                  
    return parameters

2.2 initialize_sgdm

Q:为什么这里要定义这个v
A:与优化器原理有关,参考上文给出的那个博主的博客,或者其他博主的博客,这里不详细介绍了,就是优化器的一个参数。

def initialize_sgdm(parameters):
    dW1 = np.zeros(parameters["W1"].shape)
    db1 = np.zeros(parameters["b1"].shape)
    dW2 = np.zeros(parameters["W2"].shape)
    db2 = np.zeros(parameters["b2"].shape)
    dW3 = np.zeros(parameters["W3"].shape)
    db3 = np.zeros(parameters["b3"].shape)

    v = {"dW1": dW1, "db1": db1,
         "dW2": dW2, "db2": db2,
         "dW3": dW3, "db3": db3}

    return v

2.3 initialize_adam

Q1:为什么这里要定义这个v s
A1:与优化器原理有关,参考上文给出的那个博主的博客,或者其他博主的博客,这里不详细介绍了,就是优化器的一个参数。

Q2:上面那个 sgdm 的初始化函数也用 v ,这里也用 v ,不会冲突吗?
A2:不会,因为在前面超参数设置的时候,要先选择优化器,我们并没有同时使用两个优化器。

def initialize_adam(parameters) :
    v = {}
    s = {}

    v["dW1"] = np.zeros(parameters["W1"].shape)
    v["db1"] = np.zeros(parameters["b1"].shape)
    s["dW1"] = np.zeros(parameters["W1"].shape)
    s["db1"] = np.zeros(parameters["b1"].shape)

    v["dW2"] = np.zeros(parameters["W2"].shape)
    v["db2"] = np.zeros(parameters["b2"].shape)
    s["dW2"] = np.zeros(parameters["W2"].shape)
    s["db2"] = np.zeros(parameters["b2"].shape)

    v["dW3"] = np.zeros(parameters["W3"].shape)
    v["db3"] = np.zeros(parameters["b3"].shape)
    s["dW3"] = np.zeros(parameters["W3"].shape)
    s["db3"] = np.zeros(parameters["b3"].shape)

    return v, s

3、训练神经网络

训练的思想是这样的:
总共训练 EPOCHS 轮,EPOCHS 是前文设置的超参数之一。在每一轮中,先将训练集随机打乱分割批次,打乱是为了避免由于排列组合顺序造成的干扰,分割批次是为了一次性训练一个 minibatch,这样更快,但是得到的损失曲线波动性也更大。

seed = 5	# 随机数种子,用于批次分割
cost = 0	# 损失值,先初始化为零,后面计算每次的 cost,然后记录下来
print("================== 训练神经网络 ======================")
for i in range(EPOCHS):
seed = seed + 1
minibatches = random_mini_batches(Xtrain, Ytrain, 64, seed)		# 待写,下文给出

for minibatch in minibatches:
    (minibatch_X, minibatch_Y) = minibatch		# 当然了,这里也可以使用枚举enumerate拿到minbatch_X 和 minibatch_Y 以及批数idx
    A, cache = forward_propagation(minibatch_X, parameters)		# 题目代码给出
    cost = cost_computing(A, minibatch_Y)						# 待写,下文给出
    predictions = predict(Xtest, Ytest, parameters)				# 题目代码给出
    accuracy.append(float((np.dot(Ytest, predictions.T) + np.dot(1 - Ytest, 1 - predictions.T)) / float(Ytest.size) * 100))					# 把计算得到的准确率加入到列表中
    loss.append(cost)										# 把计算得到的损失值加入到列表中
    grads = backward_propagation(cache, minibatch_X, minibatch_Y)	# 待写,下文给出

    # 根据optimizer选择合适的优化器
    if optimizer == "SGD":
        parameters = sgd(parameters, grads, learning_rate)	# 待写,下文给出
    elif optimizer == "SGDM":
        parameters, v = sgdm(parameters, grads, v, mompara, learning_rate)	# 待写,下文给出
    elif optimizer == "ADAM":
        t = t + 1  # Adam counter
        parameters, v, s = adam(parameters, grads, v, s, t, learning_rate, e, mompara, beta2)	# 待写,下文给出

if i % (EPOCHS/10) == 0:
    print("第 ", i, " 次循环,cost为:" + str(cost))
# 当这个循环执行完毕后,得到的 parameters 字典就是训练好的参数字典,然后就可以拿到题目给出的plot_decision_boundary函数里使用了。

下面依次实现上文框架中的函数。

3.1 random_mini_batches函数

老实说,这块代码我当时直接参考的另一个博主的,但是那篇文章我没保存,找不到了,但肯定有,大伙儿感兴趣可以去csdn上C一下。大致思想就是先把数据集打乱,然后分为若干批,每一批含有mini_batch_size个数据,最后除不尽的单独做为一批数据。每批数据打包成一个元组,存入列表

def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
    """
    Creates a list of random minibatches from (X, Y)

    Arguments:
    X -- input data, of shape (input size, number of examples)
    Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)
    mini_batch_size -- size of the mini-batches, integer

    Returns:
    mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
    """

    np.random.seed(seed)            # To make your "random" minibatches the same as ours
    m = X.shape[1]                  # number of training examples
    mini_batches = []

    # Step 1: Shuffle (X, Y)
    permutation = list(np.random.permutation(m))
    shuffled_X = X[:, permutation]
    shuffled_Y = Y[:, permutation].reshape((1,m))

    # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
    num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning
    for k in range(0, num_complete_minibatches):
        ### START CODE HERE ### (approx. 2 lines)
        mini_batch_X = shuffled_X[:, k*mini_batch_size : (k+1)*mini_batch_size]
        mini_batch_Y = shuffled_Y[:, k*mini_batch_size : (k+1)*mini_batch_size]
        ### END CODE HERE ###
        mini_batch = (mini_batch_X, mini_batch_Y)
        mini_batches.append(mini_batch)

    # Handling the end case (last mini-batch < mini_batch_size)
    if m % mini_batch_size != 0:
        ### START CODE HERE ### (approx. 2 lines)
        mini_batch_X = shuffled_X[:, num_complete_minibatches*mini_batch_size : m]
        mini_batch_Y = shuffled_Y[:, num_complete_minibatches*mini_batch_size : m]
        ### END CODE HERE ###
        mini_batch = (mini_batch_X, mini_batch_Y)
        mini_batches.append(mini_batch)

    return mini_batches

比如在本例子中,前文提到过,加载的数据样本总共为300个,其中划分了训练集为270个。因此,这个random_mini_batches函数的返回值mini_batches是一个列表,列表含有5个元素,每个元素都是一个元组,每个元组形式为 (mini_batch_X, mini_batch_Y),其中,前四个元组中,每个mini_batch_Xmini_batch_Y都包含了mini_batch_size个(本例设置为64)数据样本,最后一组包含了剩余的14个数据样本
在这里插入图片描述

3.2 cost_computing函数

def cost_computing(A, Y):
    m = Y.shape[1]
    logloss = np.multiply(np.log(A), Y) + np.multiply((1 - Y), np.log(1 - A))
    cost = - np.sum(logloss) / m

    return cost

损失计算公式: L = y log ⁡ y p + ( 1 − y ) log ⁡ ( 1 − y p ) L=y\log{y_p}+(1-y)\log{(1-y_p)} L=ylogyp+(1y)log(1yp)

3.3 backward_propagation函数

反向传播的目的,是得到关于各个参数的梯度,各个参数在前向传播时储存在 cache 中(见题目代码)。因此 backward_propagation 函数的返回值是W1 W2 W3 b1 b2 b3这六个参数的梯度

def backward_propagation(cache, X, Y):
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    dZ3 = 1./ m * (A3 - Y)
    dW3 = np.dot(dZ3, A2.T)
    db3 = np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = np.dot(dZ2, A1.T)
    db2 = np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = np.dot(dZ1, X.T)
    db1 = np.sum(dZ1, axis=1, keepdims=True)

    grads = {"dW3": dW3, "db3": db3,
             "dW2": dW2, "db2": db2,
             "dW1": dW1, "db1": db1}

    return grads

附反向传播公式:

3.4 sgd函数

SGD是使用梯度下降法优化,参数 θ \theta θ 的梯度下降公式为: θ : = θ − η   d θ \theta:=\theta-\eta \space d\theta θ:=θη dθ如果参数是一个向量 v \mathbf{v} v ,显然改写为: v : = v − η   g r a d v \mathbf{v}:=\mathbf{v}-\eta\space{\rm grad}\mathbf{v} v:=vη gradv如果参数是一个矩阵 A \mathbf{A} A ,显然改写为: A : = A − η   A ′ \mathbf{A}:=\mathbf{A}-\eta\space\mathbf{A}^\prime A:=Aη A

接下来为统一,参数统一只说 θ \theta θ,但他不一定是标量,接下来不再分标量、向量和矩阵讨论。

def sgd(parameters, grads, learning_rate):
    W1, W2, W3 = parameters["W1"], parameters["W2"], parameters["W3"]
    b1, b2, b3 = parameters["b1"], parameters["b2"], parameters["b3"]

    dW1, dW2, dW3 = grads["dW1"], grads["dW2"], grads["dW3"]
    db1, db2, db3 = grads["db1"], grads["db2"], grads["db3"]

    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2
    W3 = W3 - learning_rate * dW3
    b3 = b3 - learning_rate * db3

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2,
                  "W3": W3,
                  "b3": b3}

    return parameters

3.5 sgdm函数

SGDM对原来的SGD进行了改进,参数 θ \theta θ 的更新公式: θ : = θ − η   v t \theta:=\theta-\eta\space v_t θ:=θη vt v t = β   v t − 1 + ( 1 − β )   d θ v_t=\beta\space v_{t-1}+(1-\beta)\space d\theta vt=β vt1+(1β) dθ

def sgdm(parameters, grads, v, beta, learning_rate):
    v["dW1"] = beta * v["dW1"] + (1-beta) * grads["dW1"]
    v["db1"] = beta * v["db1"] + (1-beta) * grads["db1"]
    v["dW2"] = beta * v["dW2"] + (1-beta) * grads["dW2"]
    v["db2"] = beta * v["db2"] + (1-beta) * grads["db2"]
    v["dW3"] = beta * v["dW3"] + (1-beta) * grads["dW3"]
    v["db3"] = beta * v["db3"] + (1-beta) * grads["db3"]

    parameters["W1"] = parameters["W1"] - learning_rate * v["dW1"]
    parameters["b1"] = parameters["b1"] - learning_rate * v["db1"]
    parameters["W2"] = parameters["W2"] - learning_rate * v["dW2"]
    parameters["b2"] = parameters["b2"] - learning_rate * v["db2"]
    parameters["W3"] = parameters["W3"] - learning_rate * v["dW3"]
    parameters["b3"] = parameters["b3"] - learning_rate * v["db3"]

    return parameters, v

3.6 adam函数

和前文mini_batches那个函数一样,这个adam优化器当时有点绕晕,就去参考了网上的资料。
Adam的公式如下:
在这里插入图片描述

def adam(parameters, grads, v, s, t, learning_rate, epsilon, beta1 = 0.9, beta2 = 0.999):
    v_t = {}
    s_t = {}    # ADAM中包含了两个动量字典,要分别初始化,分别建立校正

    v["dW1"] = beta1 * v["dW1"] + (1 - beta1) * grads['dW1']
    v["db1"] = beta1 * v["db1"] + (1 - beta1) * grads['db1']
    v["dW2"] = beta1 * v["dW2"] + (1 - beta1) * grads['dW2']
    v["db2"] = beta1 * v["db2"] + (1 - beta1) * grads['db2']
    v["dW3"] = beta1 * v["dW3"] + (1 - beta1) * grads['dW3']
    v["db3"] = beta1 * v["db3"] + (1 - beta1) * grads['db3']

    v_t["dW1"] = v["dW1"] / (1 - beta1 ** t)
    v_t["db1"] = v["db1"] / (1 - beta1 ** t)
    v_t["dW2"] = v["dW2"] / (1 - beta1 ** t)
    v_t["db2"] = v["db2"] / (1 - beta1 ** t)
    v_t["dW3"] = v["dW3"] / (1 - beta1 ** t)
    v_t["db3"] = v["db3"] / (1 - beta1 ** t)

    s["dW1"] = s["dW1"] + (1 - beta2) * (grads['dW1'] ** 2)
    s["db1"] = s["db1"] + (1 - beta2) * (grads['db1'] ** 2)
    s["dW2"] = s["dW2"] + (1 - beta2) * (grads['dW2'] ** 2)
    s["db2"] = s["db2"] + (1 - beta2) * (grads['db2'] ** 2)
    s["dW3"] = s["dW3"] + (1 - beta2) * (grads['dW3'] ** 2)
    s["db3"] = s["db3"] + (1 - beta2) * (grads['db3'] ** 2)


    s_t["dW1"] = s["dW1"] / (1 - beta2 ** t)
    s_t["db1"] = s["db1"] / (1 - beta2 ** t)
    s_t["dW2"] = s["dW2"] / (1 - beta2 ** t)
    s_t["db2"] = s["db2"] / (1 - beta2 ** t)
    s_t["dW3"] = s["dW3"] / (1 - beta2 ** t)
    s_t["db3"] = s["db3"] / (1 - beta2 ** t)

    mdW1 = v_t["dW1"] / (np.sqrt(s_t["dW1"]) + epsilon)
    mdb1 = v_t["db1"] / (np.sqrt(s_t["db1"]) + epsilon)
    mdW2 = v_t["dW2"] / (np.sqrt(s_t["dW2"]) + epsilon)
    mdb2 = v_t["db2"] / (np.sqrt(s_t["db2"]) + epsilon)
    mdW3 = v_t["dW3"] / (np.sqrt(s_t["dW3"]) + epsilon)
    mdb3 = v_t["db3"] / (np.sqrt(s_t["db3"]) + epsilon)

    parameters["W1"] = parameters["W1"] - learning_rate * mdW1
    parameters["b1"] = parameters["b1"] - learning_rate * mdb1
    parameters["W2"] = parameters["W2"] - learning_rate * mdW2
    parameters["b2"] = parameters["b2"] - learning_rate * mdb2
    parameters["W3"] = parameters["W3"] - learning_rate * mdW3
    parameters["b3"] = parameters["b3"] - learning_rate * mdb3

    return parameters, v, s

至此,神经网络训练过程已经写完,最后要得到的值就是 parameters 字典

4、绘制损失函数

在训练时,我们已经得到每轮的损失cost,并储存在全局变量损失列表loss中,接下来就可以将其绘制出来。使用matplotlib很简单了

plt.plot(np.array(loss))
plt.title('Loss function plot with ' + optimizer)	# optimizer是在超参数定义时定义的字符串变量
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()

5、绘制准确率曲线

在训练时,我们已经得到每轮的准确率,并储存在全局变量准确率列表accuracy中,接下来就可以将其绘制出来。

plt.plot(np.array(accuracy))
plt.title('Accuracy plot with ' + optimizer)	# optimizer是在超参数定义时定义的字符串变量
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.show()

6、绘制决策边界

大伙儿有没有发现,题目给出的predict_dec函数和plot_decision_boundary函数还没有用到。这个 dec 是什么意思呢?哈哈,当然是 decision 咯。下面按题目要求把决策边界绘制出来。
这里用到 lembda 表达式作为plot_decision_boundary函数中第一个参数 model 的实参。

axes = plt.gca()
plot_decision_boundary(lambda x: predict_dec(x.T,parameters), train_X, train_Y)
predictions = predict(Xtest, Ytest, parameters)
print('准确率: %d' % float((np.dot(Ytest, predictions.T) + np.dot(1 - Ytest, 1 - predictions.T)) / float(Ytest.size) * 100) + '%')

五、结束语

至此,代码已经全部写完了。完整版代码及其运行结果会在下一篇博客中给出,今天时间不早了,哥们要回宿舍睡觉了。个人代码功底也不是很好,写博客的时候也有所删删改改,如有错误可在评论区留言讨论,我会第一时间去进行学习和更正。

更新:
完整代码和运行结果

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值