大家好,我是小枣君。
今天这篇文章,我们来聊一个非常酷的话题——语义通信。
大家都知道,自从信息革命爆发以来,我们的信息量(数据量)就在不断膨胀。
文字、图片、音频、视频……越来越多的数据在不断产生,不仅占据着我们的硬盘空间,也充斥着整个通信网络。
这些数据让我们的工作和生活更加便利,也推动着社会的进步和发展。
进入21世纪后,在云计算、大数据、物联网和人工智能的共同刺激下,数据的增长趋势更加猛烈。
根据IDC的报告,到2025年,全球数据总量将达到175ZB,约等于1750亿TB。
而ITU则预测,全球移动数据流量的年增长速率将会在2030年达到55%。2030年的数据流量,将是2020年的100倍。
面对如此巨大的流量增长,人类现有的通信技术手段,已经疲于招架。
1948年,祖师爷克劳德·香农(Claude Elwood Shannon)发表了那篇经典论文——《A Mathematics Theory of Communication(通信的数学理论)》,标志着信息论的诞生。
后来,1949年,他又发表了《Communication in the Presence of Noise(噪声下的通信)》,阐明了通信的基本问题,给出了通信系统的模型,以及著名的香农公式。
从那之后,我们就一直在信息论和香农公式的基础上,进行通信技术的研究。
经过70多年的积累,我们的通信技术已经无限接近于香农极限。以huffman编码、算法编码为代表的信源编码技术,把信源数据压缩到了极致。而以LDPC码、极化码为代表的信道编码技术,把信道也利用到了极致。
那接下来,该怎么办呢?面对万物智联时代的数据洪流,我们的优质频谱资源越来越少,硬件和能耗成本越来越高,该如何应对?
█ 通信的三个层级
大家不妨冷静思考一下。
一直以来,我们在通信技术上所做的努力,似乎都在做一件事情——把携带信息的符号,完整、准确、快速地从信源发送到信宿。
这就好像一个勤劳的快递员,他的唯一使命,就是把寄件人交给他的货物,完好无损且快速地,送到收件人的手上。