到底什么是语义通信?

本文探讨了语义通信的概念,作为应对数据洪流和通信技术瓶颈的一种可能解决方案。语义通信强调在理解内容基础上进行通信,通过智能特征提取和压缩,提高通信效率。文章介绍了语义通信的特点、系统架构,面临的挑战以及近年来的研究进展,指出其在6G和智能时代的重要潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是小枣君。

今天这篇文章,我们来聊一个非常酷的话题——语义通信

bef3df3495db19050fe200d405c53fbd.jpeg

大家都知道,自从信息革命爆发以来,我们的信息量(数据量)就在不断膨胀。

文字、图片、音频、视频……越来越多的数据在不断产生,不仅占据着我们的硬盘空间,也充斥着整个通信网络。

这些数据让我们的工作和生活更加便利,也推动着社会的进步和发展。

进入21世纪后,在云计算、大数据、物联网和人工智能的共同刺激下,数据的增长趋势更加猛烈。

根据IDC的报告,到2025年,全球数据总量将达到175ZB,约等于1750亿TB。

而ITU则预测,全球移动数据流量的年增长速率将会在2030年达到55%。2030年的数据流量,将是2020年的100倍。

b7816433d6633dcce135a1cf8f7efa08.png

面对如此巨大的流量增长,人类现有的通信技术手段,已经疲于招架。

1948年,祖师爷克劳德·香农(Claude Elwood Shannon)发表了那篇经典论文——《A Mathematics Theory of Communication(通信的数学理论)》,标志着信息论的诞生。

后来,1949年,他又发表了《Communication in the Presence of Noise(噪声下的通信)》,阐明了通信的基本问题,给出了通信系统的模型,以及著名的香农公式。

f37bf5201d0e7b2aba241e44f24dafde.png

从那之后,我们就一直在信息论和香农公式的基础上,进行通信技术的研究。

经过70多年的积累,我们的通信技术已经无限接近于香农极限。以huffman编码、算法编码为代表的信源编码技术,把信源数据压缩到了极致。而以LDPC码、极化码为代表的信道编码技术,把信道也利用到了极致。

那接下来,该怎么办呢?面对万物智联时代的数据洪流,我们的优质频谱资源越来越少,硬件和能耗成本越来越高,该如何应对?

通信的三个层级

大家不妨冷静思考一下。

一直以来,我们在通信技术上所做的努力,似乎都在做一件事情——把携带信息的符号,完整、准确、快速地从信源发送到信宿。

这就好像一个勤劳的快递员,他的唯一使命,就是把寄件人交给他的货物,完好无损且快速地,送到收件人的手上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值