文章目录
语义通信定义
- 解释一:语义通信可以预先理解业务需求与环境,对信源的语义特征进行
理解、提取及传输
,同时保证信宿可以理解收到的信源语义特征,从而成功恢复基于语义的信源信息。通过对语义特征的准确提取与高效传输,语义通信将大幅度减少6G全新应用场景中视频、图片等大带宽业务的传输带宽需求,从而大幅度提高通信效率、改进用户体验。 - 解释二:语义通信是指从信源中提取语义信息并编码,在有噪信道中传输的通信方式。传统的语法通信,要求接收端译码信息与发送端编码信息严格一致,即实现
比特级的无差错传输
。而语义通信与之相反,并不要求译码序列与编码序列严格匹配,只要求接收端恢复的语义信息与发送语义信息匹配即可
- 解释三:语义通信的基本思想是在信源提取要发送的消息的语义信息,而不是传输消息的比特流,例如发送消息背后的含义或特征,并在信宿借助背景知识库解释语义信息。
参考 Multi-Modal and Multi-User Semantic Communications for Channel-Level Information Fusion - 解释四:语义通信的主要目的是实现收发端语义信息的准确交互,利用先进的人工智能(AI,
artificial intelligence)技术提取出原始数据中与接收端特定的智能任务最相关的信息进行传输,可有效压缩数据冗余,提升信息传输的有效性,减轻网络传输的压力,降低智能任务的处理时延
参考 多模态语义通信研究综述
语法、语义和语用
- 语法(syntactic):
通信符号
如何准确地传输 - 语义(semantic、semantic level):传输的符号如何精确地表达期望的含义
- 语用(pragmatic、effective level):接收的信息如何有效地以期望的方式影响行为
语义通信与经典通信的差异
- 语义通信与经典通信最重要的差异在于,语义编码与译码模块基于海量数据训练的知识库,通过深度学习网络,提取与重建语义信息,该过程对经典信号传输提供强先验知识,有效提升传输有效性和可靠性。在发送端,语义提取模块基于知识库和深度学习网络,对信源消息提取语义特征。其中,语义提取模块根据信源冗余特性,采用不同结构的深度学习网络模型。例如,时序以及文本信源采用循环神经网络(RNN)网络模型、图像信源采用卷积神经网络(CNN)模型、图数据源采用图卷积网络(GCN)模型。
- 在接收端,语义综合模块基于知识库和深度学习网络,对接收的语义信息进行重建。若信源具有多模态或异构性,则语义提取编码时还需要对多源数据进行语义综合。收发两端
共享云端知识库
,通过数据驱动
的方法赋予神经网络特定场景下的先验知识。
语法通信和语义通信的不同
参考: 北京邮电大学-张平 语义通信技术的发展趋势及应对之策 第38分钟
语义通信的研究背景
经典信息论指导下的通信技术已经日臻完善,例如,以Huffman编码、算法编码、矢量量化、 变换编码为代表的信源编码技术已经逼近信源熵/率失真函数
,以低密度奇偶校验(LDPC)码、极化码为代表的先进信道编码技术已经逼近信道容量
。这些先进技术推动以互联网、5G 为代表的现代通信科技取得了突飞猛进的发展。但是,经典信息论在研究范畴、研究层次与研究维度方面仍然存在局限。
参考 面向未来的语义通信:基本原理与实现方法
语义通信研究现状
参考: 北京邮电大学-张平 语义通信技术的发展趋势及应对之策 第38分钟
面向 6G移动通信的语义通信系统
- 发送端,信源产生的信息首先送入语义提取模块,产生语义表征序列,接着送入语义信源编码器,对语义特征压缩编码,然后送入信道编码器,产生信道编码序列,送入传输信道。
- 接收端,信道输出信号首先送入信道译码模块,输出的译码序列再送入语义信源译码器,得到的语义表征序列再送入语义恢复与重建模块,最终得到信源数据送入信宿。