今天也要加油鸭~
- 这是一份总结的学习笔记
- 路漫漫其修远兮,吾将上下而求索
- 可阅读可评论可分享可转载,希望向优秀的人学习
主动思考,理解商业需求
1、话题讨论
-
数据分析师是干什么?
建立模型,优化指标(弱);建立报表,监控指标变化;组织架构,未来目标发展; -
分析师的核心价值是什么?
通过日常监控,发现问题;-》通过方案设计解决问题(理解背后的原因)
也就是:发现-》解决-》发现; -
业务方为什么要信任你的产出?
把脑袋的东西放你的脑袋;
2、如何与业务方发生化学反应
-
使命:让决策更科学
-
核心价值:机会和危机
-
商业务求/数据需求/分析框架/指标体系/数据ETL/方案设计//数据分析与建模/报告部署/方案落地
日常监控,原因分析,效果评估,假设检验,方案设计,探索分析,数据产品,数据框架,数据驱动 -
信任模型:影响,行为,动机
-
信任,习惯,驱动-》被动响应+主动推动(司机运营报表)+主动思考(拖动业务多做一些事情)
低效补贴影响城市预算,激励城市-》全职司机/兼职司机等级
司机等级体系-》司机歧视补贴,分等级分账权益
探索分城市司机拉新运营:按照城市,解决本地沉默司机,通过带动周边司机
思考系统性的机会:兼职司机对于生态的影响更大,带动全职司机订单变化
区域接单(只在某个范围接单);
总结经验提高效率(原因分析框架和产品),总结经验提高效率(业务日常决策框架)
3、数据分析的一般流程和常用方法
-
理解商业需求
以终为始,理解商业需求的背景、对象和本质目的 -多问为什么 -
依次回答
是否符合常理?哪里符合?不符合?
为什么要做这个事情?展开:客户是谁?客户、业务价值是什么?(边界是什么)
如:家庭电钻案例(家里需要打孔的用户,),司机等级体系(平台司机(高险)留存的业务方,淘宝会员体系:平台公司负责人,作用对象是消费者;客户-》平台业务),补贴评估体系;
什么情况和标志出现,才体现我们解决了客户的问题?
备注:解决方案还是一次性问题。 -
转化为数据需求
可能实施方案,难点,关键路径; -
梳理分析思路
常用方法:假设与检验法、NLP-理解层次法
经验总结:
1、客户导向、换位思考
2、小题大做、捉大放小
3、以终为始、主线明确
4、逻辑思维、逆向思维 -
如何梳理指标
先核心再扩展
4、常见分析问题的一般解法
- A.现在怎么样 --日常监控
分清三类数据、搭建决策框架、重点是发现而不是解决 - B.为什么会这样–异动分析
层次细分、公式拆解、环境分析、事件分析 - C.真的是那样吗–效果评估
明确目标、以终为始、观点善意客观、剧建设性 - D.如果这样会怎么样-- 假设检验
明确资源、以终为始、自上而下、MECE、逆向思维 - E. 可以或应该怎么样–方案设计
明确目标和资源、先框架后细分、以终为始、逻辑思维 - F. 可能要怎么样–探索分析
依赖决策框架、先发散后聚焦、先看后做、非线性思路、逆向思维
5、数据分析的体会、心得和要求
-
心得体会
培养玩数据的兴趣,享受过程
培养不断用心主动去思考的习惯
非线性思考,逆向思维,为”没有答案”的答案寻找答案
一专多长,选择放弃还是放弃选择
始终考虑产出的落地性和复用性,但要分清,产出要求是解决一次性问题的方法还是解决方案 -
产生要求
数据:分析观点可以不完善,但不能出现可控范围内的数据错误
解读:用现象解释现象,尤其是在异动分析和效果评估方面
观点:分清楚分析目的是“发现”还是“解答”,观点要善意、客观,建议要具有建设性
报告:框架清洗,每页观点纯粹,对整份报告熟记于心
推荐书籍
《思考的技术》《定位》《怪诞行为学》《影响力》《失控》