利用Python+opencv模块的dnn实现Faster R-CNN(一)

本文介绍了在使用OpenCV的dnn模块实现Faster R-CNN过程中遇到的问题,主要是在预测阶段报错,具体为cv2.error: OpenCV(3.4.2) C:projectsopencv-pythonopencvmodulesdnnsrclayerspermute_layer.cpp:137: error: (-215:Assertion failed) (int)_numAxes == inputs[0].size() in function ‘cv::dnn::PermuteLayerImpl::getMemoryShapes’。作者提供了相关代码,并寻求解决方案。
摘要由CSDN通过智能技术生成

利用Python+opencv模块的dnn实现Faster R-CNN(一)

开发环境

Pycham,opencv(3.4.2)

faster r-cnn学习

opencv实现Faster R-CNN
文章中的代码全部来源于这篇文章,但是运行后出现的错误不知道怎么解决。
Faster R-CNN详解

-- coding: utf-8 --

import cv2
import os
import matplotlib.pyplot as plt
import time

class general_faster_rcnn(object):
def init(self, modelpath):
self.conf_threshold = 0.3 # Confidence threshold
self.nms_threshold = 0.4 # Non-maximum suppression threshold
self.net_width = 416 # 300 # Width of network’s input image
self.net_height = 416 # 300 # Height of network’s input image

    self.classes = self.get_coco_names()
    self.faster_rcnn_model = self.get_faster_rcnn_model(modelpath)
    self.outputs_names = self.get_outputs_names()

def get_coco_names(self):
    classes = ["person", "bicycle", "car", "motorcycle", "airplane",
               "bus", "train", "truck", "boat", "traffic light",
               "fire hydrant", "background", "stop sign", "parking meter",
               "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
               "elephant", "bear", "zebra", "giraffe", "background",
               "backpack", "umbrella", "background", "background",
               "handbag", "tie", "suitcase", "frisbee", "skis",
               "snowboard", "sports ball", "kite", "baseball bat",
               "baseball glove", "skateboard", "surfboard", "tennis racket",
               "bottle", "background", "wine glass", "cup", "fork", "knife",
               "spoon", "bowl", "banana", "apple", "sandwich", "orange",
               "broccoli", "carrot", "hot dog", "pizza", "donut", "cake",
               "chair", "couch", "potted plant", "bed", "background",
               "dining table", "background", "background", "toilet",
               "background", "tv", "laptop", "mouse", "remote", "keyboard",
               "cell phone", "microwave", "oven", "toaster", "sink",
               "refrigerator", "background", "book", "clock", "vase",
               "scissors", "teddy bear", "hair drier", "toothbrush",
               "background"]

    return classes

def get_faster_rcnn_model(self, modelpath):
    pb_file = os.path.join(modelpath, "frozen_inference_graph.pb")
    pbtxt_file = os.path.join(modelpath, "graph.pbtxt")

    net = cv2.dnn.readNetFromTensorflow(pb_file, pbtxt_file)
    net.setPreferableBackend
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值