Python - Opencv应用实例之头发自动分割、计数、特征统计智能分析系统

Python-Opencv应用实例之头发自动分割、计数、特征统计智能分析系统

简介:

本文章将通过Python+Opencv基于传统图像处理算法实现头发的自动分析功能。

  • 自动分割:对图像中的头发丝实现分割并标签化处理
  • 计数:将粘连在一起的头发丝或者单独的头发丝进行识别并记录其个数
  • 特征分析:统计头发的长度、宽度并写入表格进行汇总

设计算法:
图像缩放 -> 阈值分割 -> 形态学处理 -> 连通域分析 -> 提取骨架 -> 阈值调参进行计数 -> 列表储值 -> 画图+保存结果

效果大体如下:

  • 测试图像来自百度图片,如有侵权,请私信我删除!
    在这里插入图片描述
<
本项目是一个基于PyTorch框架实现的通用图像分割系统,支持二分类及多类别分割任务。系统提供从数据预处理到模型训练、验证评估的完整流程,具有高度可配置性和实用性。在数据处理方面,系统支持自定义图像和掩码文件格式(如.jpg、.png等),能自动处理不连续的标签值,并集成数据增强功能以提升模型泛化能力。模型特性上,UNet架构可根据任务需求灵活调整参数,包括输入尺寸、卷积通道数等,同时兼容不同类别数量分割任务(通过--num_classes参数指定)。训练功能支持GPU加速,提供学习率、批次大小等超参数配置选项,可记录损失曲线和评估指标(如IoU、Dice系数),并自动保存性能最佳的模型权重。 使用流程简明:用户需按规范组织数据集(图像与掩码文件需名称对应且分别存放于images/masks子目录),通过命令行参数即可启动训练,例如指定数据路径(--data_dir)、学习率(--learning_rate)或标签映射规则(--label_mapping)。系统输出包含模型权重文件(.pth)、训练曲线可视化图表及指标日志,便于结果分析。特别注意事项包括:掩码需为单通道灰度图且标签值为整数,多分类任务推荐使用one-hot编码掩码。项目依赖主流科学计算库(PyTorch、NumPy)及可视化工具(Matplotlib),安装简便。该系统适用于医学影像、遥感等领域的语义分割任务,兼顾易用性与扩展性,用户可通过调整UNet深度或添加注意力机制等进一步优化性能。 【项目说明书】包含代码和原理的讲解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明月醉窗台

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值