Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning

arxiv链接

前言

有时候, 输入数据加入细微的扰动, 都会让模型结果大相径庭.
因此, 我们总是希望训练结果的分布是光滑的, 这样才能保持稳定.
但在连续分布的空间中, 总是存在过大的间隙, 这些间隙只能靠更多的数据或减小网络复杂度(正则)的方法让它尽可能光滑.
VAT同样是为了解决光滑问题, 且解释性更强, 也更直观.
我只读了文章前4页, 做个大概了解.

思路

一个图片是N维中的一个点P, 给数据加噪, 其实就是在这P点周围画了一个小圈, 小圈内都是点P加噪后的图.
所以, 自然地我们希望小圈周围的点与P点预测结果一致.
这是早期就有的思路.
但缺点是, 只有有标签的图才能用这个方法, 而空间中大部分都是没标签的.
拉之前
我们可以把上图中P1和P2点周围拉到下图一样与1齐平, 但其他的地方我们很难将其拉起, 因为我们不知道中间这些点该拉到0还是1.
拉之后
但我们依然不放弃平滑的梦想, 因为无论怎么样, 平滑的函数还是更加可靠的.
所以没有标签, 就创造一个标签.
设模型输出值为 P ( y ∣ x , θ ) P(y|x,θ) P(yx,θ), 其中θ是模型参数, x是输入参数, y是输出标签.
之前说过, 在有数据点(即有标签)的位置, 希望周围点标签与数据点一致.
那么,在没有标签的数据点上, 我们放宽要求, 只希望周围点的 P ( y ∣ x + ε , θ ) P(y|x+ε,\theta) P(yx+ε,θ) P ( y ∣ x , θ ) P(y|x,\theta) P(yx,θ)一致.
举个例子, 随机生成了一张没标签的图, 网络给出结果是P=0.6, 那就要求这张图周围的图的P也是0.6.
这就是VAT的思路. 因为这些点的标签都是凭空获得的, 所以就被冠以Virtual的名字.很有日本的风格.

警告

具体的loss设计请看原文, 都是很简单的设计, 参数意义也讲的很明白. 不要相信百度搜出来的, 公式都写错了, 参数意义也没讲清楚, 只建议作为翻译参考.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值