之前在做一个分类的任务,受师兄指点,知道了这样一个损失,但是笔者的实验结果并不是很好,反而和过采样的结果相比略有下降,但是权当学习了
focal loss是何凯明大神在论文:Focal Loss for Dense Object Detection 中提出来用于目标检测任务的,但是本质也还是分类任务,所以就尝试把focal loss用在多分类任务上。
focal loss的形式如下:
可以看到这里有两个超参,是用来平衡样本数量的,
相当于惩罚项,用来控制难分样本的挖掘,
=1的时候就是我们平常使用的交叉熵损失,但是当