Pytorch中经常见到的View( )函数

Pytorch里经常会见到tensor.view( a, b ,c ......),a, b, c等等都是函数内的参数,可以理解为reshape功能,重构张量的维度。

比如:

a = torch.Tensor(2, 3)
print(a)

# tensor([[0.0000, 0.0000, 0.0000],
#        [0.0000, 0.0000, 0.0000]])

b = a.view(3, 2)
print(b)

# tensor([[0.0000, 0.0000],
#        [0.0000, 0.0000],
#        [0.0000, 0.0000]])

这里有特殊的地方就是参数为-1的时候,比如

print(a.view(1,-1))
# tensor([[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])

-1表示该维度的大小由估计得到,第一个维度为1,则tensor为一行,列数则估计出来,在该例子中为6。

如果只有一个参数,即view(-1),则会将tensor里面的所有维度数据转化成一维的,并且按先后顺序排列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值