每日(一文 Omnidirectional Motion Classification With Monostatic Radar System Using Micro-Doppler Signatu

Omnidirectional ——全角度

这是一个非常重要的term,正如文章作者所言,针对全角度微多普勒谱识别的问题并未系统地被研究过。该文章借助自设计的卷积神经网络完成了伪端到端的全角度识别(实际上并没有做到真正的端到端,仅仅完成了从Spectrogram->Result的过程,雷达RawData->Spectrogram仍然需要通过传统的时频分析方法完成),并且提出了一个行之有效的分类器角度敏感性分析方法

深度卷积神经网络因其十分复杂的结构具备了理论上拟合大多数映射的能力,于是如何解释网络中的各个子结构成为了一项较为关键的任务(即为何网络中需要这样设计从而能够达到目标功能)。

DataPreparation

  • Data Augmentation Strategy:
    将总计大约3s的数据段按照1s的窗,90%的overlap分割;
    共有43段数据 x 36个角度

Structure

  • 1 × 1 1 \times 1 1×1 Conv的意义何在

  • PoolingLayer的意义何在
    ref:explaination about 1x1 convs and poolings

  • 整体的结构可以基本理解为每一层的输入都是前面所有层输出的Concatenation(其意义何在;这与多角度分类的任务有任何联系)

  • 最后的输出层设计为C-P-C,第一个C连接隐层与输出层(为什么需要这个连接C,它并不会改变隐层输出的scale与channels);P会将每个连接层输出的feature map降采样到单值;第二个C为1x1 conv,负责将输出层数整形到需要分类的目标类数上。

  • 值得注意的是,这样进行输出层设计的目的是避免直接进行FC参数陡然上升。

Results

该文章提出的方法识别正确率在全角度上均高达98%以上,其性能远超传统机器学习的方法。但与此同时其他深度学习的框架在该多角度分类任务上与提出的方法并没有显著的准确率差异,这是否意味着数据集过于简单可分?此方法是否必要?

Comments

首先必须指出的是,该文章在多角度分类任务上确实达到了良好的效果。但较为遗憾的是,其他类似的已知网络(如VGGNet-16等)的表现与之差异不大,且该文章后续仅强调了传统方法的缺点,并未具体说明该方法与已知网络之间相比有哪些优缺点。同时,在该方法达到良好效果的同时,也没有指出其创新的网络架构之于此类任务的优越性,即究竟是该架构很好地适应了此类任务,还是仅仅因为该架构能够泛化地解决所有图像分类相关的问题?

当任务难度增加后,该方法能与其他已知网络结构的性能拉开差距吗?

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值