对HMM-GMM模型的理解
最新推荐文章于 2024-02-10 18:17:29 发布
本文介绍了HMM(隐马尔科夫模型)的基本概念,强调了HMM在处理时序信息中的作用,并讨论了全HMM和左右HMM的区别。针对HMM在处理连续分布数据的局限性,引入了GMM(高斯混合模型)作为发射概率模型,形成HMM-GMM模型,用于更好地拟合复杂分布数据。同时,提到了HMM-GMM模型在语音识别等任务中的应用,以及如何用DNN(深度神经网络)进一步改进模型。尽管HMM在时序信息建模上存在不足,但其思想与RNN(循环神经网络)等现代模型有相似之处。
摘要由CSDN通过智能技术生成