对HMM-GMM模型的理解

本文介绍了HMM(隐马尔科夫模型)的基本概念,强调了HMM在处理时序信息中的作用,并讨论了全HMM和左右HMM的区别。针对HMM在处理连续分布数据的局限性,引入了GMM(高斯混合模型)作为发射概率模型,形成HMM-GMM模型,用于更好地拟合复杂分布数据。同时,提到了HMM-GMM模型在语音识别等任务中的应用,以及如何用DNN(深度神经网络)进一步改进模型。尽管HMM在时序信息建模上存在不足,但其思想与RNN(循环神经网络)等现代模型有相似之处。
摘要由CSDN通过智能技术生成

一、HMM的理解

HMM——Hidden Markov Model,隐马尔科夫链模型,认为某时序信息 X ( t ) X(t) X(t)可以由一个隐状态链 S ( n ) S(n) <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值