yolov5训练高精度非机动车驾驶检测

该文介绍了如何利用yolov5训练一个专门检测驾驶中的非机动车(电动车、摩托车、自行车和三轮车)的模型。作者创建了自己的数据集,包含了超过5000张图片和20000个目标框标注,并提供了数据集和代码链接。通过数据划分、XML转Yolo格式的标注以及使用yolov5进行训练,最终得到的模型在监控场景下表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

序言

使用yolov5训练非机动车驾驶状态的模型,检测内容为驾驶非机动车的人和车一体,单独的人或者单独的非机动车不检测,示例如下图所示:
在这里插入图片描述

一、数据准备

因为网上的数据集,包括coco数据集等,均没有将驾驶状态的非机动车做标注,通常都是独立的人、非机动车目标,所以这里需要重新收集数据再进行重新标注,该示例训练数据集由自己收集、标注,标注内容包括三个类:电动车(摩托车也包含在内)、三轮车、自行车;数据大部分来源于网上的监控视角(主要做监控检测),数据量5000+张,目标框标注超过20000+,数据经过精心筛选,非常适合监控下的非机动车驾驶检测,示例如下所示:

在这里插入图片描述

数据标注情况:

  • all gt : 20246 (所有目标)
  • bicycle gt: 5951 (自行车)
  • electric gt: 13819 (电动车or摩托)
  • tricycle gt: 476 (三轮车)

二、yolov5训练

这里默认已经配置好了yolov5运行所需要的环境;

首先准备一个文件夹,文件夹中内容如下,记住该文件夹绝对路径:
在这里插入图片描述

  • Annotations 为xml标注文件
  • images 存放训练图片
  • ImageSets 用于存放划分的train、test、val txt文件
  • labels 用于存放yolo格式标签

首先第一步划分数据集,使用如下代码:

import os
import random

trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = '上面的文件夹路径/Annotations'
txtsavepath = '上面的文件夹路径/images'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('上面的文件夹路径/ImageSets/trainval.txt', 'w')
ftest = open('上面的文件夹路径/ImageSets/test.txt', 'w')
ftrain = open('上面的文件夹路径/ImageSets/train.txt', 'w')
fval = open('上面的文件夹路径/ImageSets/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftest.write(name)
        else:
            fval.write(name)
    else:
        ftrain.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

第二步将xml转换yolo格式,使用如下代码:

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

sets = ['train', 'test', 'val']

classes = ['electric','bicycle','tricycle']              #  3类标注文件

def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(image_id):
    in_file = open('上面的文件夹路径/Annotations/%s.xml' % (image_id),encoding='UTF-8')
    # print(in_file)
    out_file = open('上面的文件夹路径/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()
print(wd)
for image_set in sets:
    if not os.path.exists('上面的文件夹路径/labels/'):
        os.makedirs('上面的文件夹路径/labels/')
    image_ids = open('上面的文件夹路径/ImageSets/%s.txt' % (image_set)).read().strip().split()
    list_file = open('上面的文件夹路径/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        # print(image_id)
        list_file.write('上面的文件夹路径/images/%s.jpg\n' % (image_id))
        try:
            convert_annotation(image_id)
        except:
            print(image_id)
    list_file.close()

第三步在yolov5/data中创建一个Nonvehicle.yaml文件,文件内容如下:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: python train.py --data coco.yaml
# parent
# ├── yolov5
# └── data
#     └── chopsticks  ← downloads here


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: 上面文件夹的路径/  # dataset root dir
train: train.txt  # train ImageSets (relative to 'path') 118287 ImageSets
val: val.txt  # val ImageSets (relative to 'path') 5000 ImageSets
test: test.txt  # 20288 of 40670 ImageSets, submit to https://competitions.codalab.org/competitions/20794

# Classes
nc: 3  # number of classes
names:  ['electric','bicycle','tricycle']  # class names

第四步在models中创建yolov5s_nonvehicle.yaml文件(当然你也可以用其他模型,n、m、l等),并将文件中类别数改为3,其他不用修改。

第五步开始训练,运行以下代码:

python train.py --data Nonvehicle.yaml --cfg yolov5s_nonvehicle.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 100

训练结束后的精度参考如下所示:
在这里插入图片描述

因为训练数据中含有很多小目标,所以map精度并没有特别的高,这个不必纠结,主要还是看可视化效果,这里拿一张比较经典的图来做测试,取conf_thres=0.5 ,iou_thres=0.4,效果如下:

原图:
在这里插入图片描述

检测效果:
在这里插入图片描述
可以看到效果还是很不错的,基本上没有漏检,因为图片上没有自行车和三轮车,所以再找了一张图片测试:

原图:
在这里插入图片描述

检测效果:
在这里插入图片描述
后面的目标实在太小了,所以没检测到,还是可以理解的,可以看到效果还是很不错的。

附:

yolov8n训练结果:
在这里插入图片描述
yolov8s训练结果:
在这里插入图片描述

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值