地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1
输出:3
示例 2:
输入:m = 3, n = 1, k = 0
输出:1
解题思路:深度搜索与回溯
递归终止条件:当索引越界、数位和越界、已经访问过则返回0。
否则单元格数目加一,向下搜索向右搜索。
class Solution {
int m,n,k;
boolean[][] visited;
public int movingCount(int m, int n, int k) {
this.m = m;this.n=n;this.k = k;
this.visited = new boolean[m][n];
return dfs(0,0,0,0);
}
int dfs(int i,int j,int si,int sj){
if(i>=m||j>=n||si+sj>k||visited[i][j]) return 0;
visited[i][j] = true;
return 1+dfs(i+1,j,(i+1)%10==0?si-8:si+1,sj)+dfs(i,j+1,si,(j+1)%10==0?sj-8:sj+1);
}
}
作者:Krahets
链接:https://leetcode.cn/leetbook/read/illustration-of-algorithm/9h6vo2/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。