Machine Learning
1-1 Introduction
- Grew out of work in AI
- New capability for computers
Examples:
-
Database mining
- Large datasets from growth of automation/web
- E.g., Web click data, medical records, biology, engineering
-
Application can’t program by hand.
- E.g., Autonomous helicopter, hand writing recognition, most of Natural Language Processing(NLP), Computer Vision.
-
Self-customizing programs
- E.g., Amazon, Netflix product recommendation.
-
Understanding human learning (brain, real AI)
1-2 What is the machine learning?
Machine Learning definition
- Arthur Samuel (1959). Machine learning: Field of study that gives computers the ability to learning without being explicitly programmed.
- Tom Mitchell (1998). Well-posed Learning problem: A computer program is said to learn from exprience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with exprience E.
Machin Learning algorithms
-
Supervised learning
-
Unsupervised learning
-
Others: reinforcement learning, recommender systems.
-
Also talk about: Practical advice for applying learning algorithms.
1-3 Supervised learning
- “right answers” given
- Regression: Predict continuous valued output.
- Classification: Discrete valued output (0 or 1).
1-4 Unsupervised learning
Data that looks like that doesn’t have any labels, or that all has the same label or really no lables.
- Clustering algorithm.
- Cocktail party algorithm.
(Using the octave or matlab programming environment)