[Note] Machine Learning——Chapter 1

Machine Learning

1-1 Introduction

  • Grew out of work in AI
  • New capability for computers

Examples:

  • Database mining

    • Large datasets from growth of automation/web
    • E.g., Web click data, medical records, biology, engineering
  • Application can’t program by hand.

    • E.g., Autonomous helicopter, hand writing recognition, most of Natural Language Processing(NLP), Computer Vision.
  • Self-customizing programs

    • E.g., Amazon, Netflix product recommendation.
  • Understanding human learning (brain, real AI)

1-2 What is the machine learning?

Machine Learning definition

  • Arthur Samuel (1959). Machine learning: Field of study that gives computers the ability to learning without being explicitly programmed.
  • Tom Mitchell (1998). Well-posed Learning problem: A computer program is said to learn from exprience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with exprience E.

Machin Learning algorithms

  • Supervised learning

  • Unsupervised learning

  • Others: reinforcement learning, recommender systems.

  • Also talk about: Practical advice for applying learning algorithms.

1-3 Supervised learning

  • “right answers” given
  • Regression: Predict continuous valued output.
  • Classification: Discrete valued output (0 or 1).

1-4 Unsupervised learning

Data that looks like that doesn’t have any labels, or that all has the same label or really no lables.

  • Clustering algorithm.
  • Cocktail party algorithm.

(Using the octave or matlab programming environment)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值