一.四元数
1.四元数简介
四元数实际上是对复数的一种维度扩展(关于复数在第三篇:复数与二维平面旋转),复数可以在二维平面中表示移动和旋转,而四元数可以在三维中表示旋转,在图形学中四元数常用来计算和表示3D物体的旋转。
2.四元数的组成
一个四元数表示为:
Q = a + bi + cj + dk(其中a为标量部分,bi+cj+dk为向量部分)

发现四元数的数学家汉密尔顿将四元数的"虚部"称为"Vector(向量)",所以向量(Vector)一词最早是从四元数而来。
3.四元数的重要概念:
最重要的概念莫过于:
i^2 = j^2 = k^2 =ijk = -1
这个性质和复数的i^2 = -1很相似,但是多了两个维度和ijk这个性质。
其次,
在四元数的乘法计算中,没有交换律
二.3D旋转与四元数:
1.旋转公式:
用四元数来进行3D旋转,不像在二维平面中用复数和点直接相乘,而是有如下公式: