【6 插值方法】实例实战篇

背景知识

例1:在1-12的11小时内,每隔1小时测量一次温度,测得的温度依次为:5,8,9,15,25,29,31,30,22,25,27,24。试估计每隔1/10小时的温度值。

MATLAB程序:

hours=1:12;
temps=[5 8 9 15 25 29 31 30 22 25 27 24];
h=1:0.1:12;
t=interp1(hours,temps,h,'spline'); %h,t插值后的数据
plot(hours,temps,'+',h,t,hours,temps,'r:')%该命令可以拆分为三个命令
...plot(hours,temps,'+')将原数据以蓝色+号表示
...plot(h,t)将插值后的数据连成线
...plot(hours,temps,'r:')将原数据以红色冒号连成线
xlabel('Hour'),ylabel('Degrees Celsius')
运行结果:

   
   

判断题

 
(1/1 分数)

使用插值方法进行函数插值时插值节点个数n越大,插值的误差就越小

单选题

 
(1/1 分数)

已知函数f(x)在n个不同的点x1,…,xn处的函数值为y1,…,yn, 则,最高可以确定一个几次多项式?

单选题

 
(1 满分)

以下不是拉格朗日插值多项式的优点的是( )

单选题

 
(1/1 分数)

以下是三次样条插值函数缺点的是:( )

单选题

 
(1/1 分数)

分段线性插值的优点是( )




    
    

判断题

 
(1/1 分数)

在运用Matlab进行一维插值方法计算时,自变量x可以是非单调的。

判断题

 
(1/1 分数)

在运用Matlab进行一维插值方法计算时,xi可以取自变量x的范围之外的值进行插值计算。

多选题

 
(1/1 分数)

MATLAB一维插值计算中函数yi=interp1(x,y,xi,'method')的method方法可以取( )

'nearest', 'linear', 'cubic', 'spline', - 正确

6.4 二维插值

判断题

 
(2/2 分数)

1、MATLAB作二维插值计算,采用网格节点数据插值命令 z=interp2(x0,y0,z0,x,y,’method’),其中x0,y0,z0都是向量。

2、MATLAB作二维插值计算,采用散点据插值命令z=griddata(x0,y0,z0,x,y,’method’),其中x0,y0,z0都是向量。







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云炬学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值