背景知识
例1:在1-12的11小时内,每隔1小时测量一次温度,测得的温度依次为:5,8,9,15,25,29,31,30,22,25,27,24。试估计每隔1/10小时的温度值。
MATLAB程序:
hours=1:12; temps=[5 8 9 15 25 29 31 30 22 25 27 24]; h=1:0.1:12; t=interp1(hours,temps,h,'spline'); %h,t插值后的数据 plot(hours,temps,'+',h,t,hours,temps,'r:')%该命令可以拆分为三个命令 ...plot(hours,temps,'+')将原数据以蓝色+号表示 ...plot(h,t)将插值后的数据连成线 ...plot(hours,temps,'r:')将原数据以红色冒号连成线 xlabel('Hour'),ylabel('Degrees Celsius')
运行结果:
判断题
(1/1 分数)使用插值方法进行函数插值时插值节点个数n越大,插值的误差就越小
单选题
(1/1 分数)已知函数f(x)在n个不同的点x1,…,xn处的函数值为y1,…,yn, 则,最高可以确定一个几次多项式?
单选题
(1 满分)以下不是拉格朗日插值多项式的优点的是( )
单选题
(1/1 分数)以下是三次样条插值函数缺点的是:( )
单选题
(1/1 分数)分段线性插值的优点是( )
判断题
(1/1 分数)在运用Matlab进行一维插值方法计算时,自变量x可以是非单调的。
判断题
(1/1 分数)在运用Matlab进行一维插值方法计算时,xi可以取自变量x的范围之外的值进行插值计算。
多选题
(1/1 分数)MATLAB一维插值计算中函数yi=interp1(x,y,xi,'method')的method方法可以取( )
6.4 二维插值
判断题
(2/2 分数)1、MATLAB作二维插值计算,采用网格节点数据插值命令 z=interp2(x0,y0,z0,x,y,’method’),其中x0,y0,z0都是向量。
2、MATLAB作二维插值计算,采用散点据插值命令z=griddata(x0,y0,z0,x,y,’method’),其中x0,y0,z0都是向量。