人工智能基础
文章平均质量分 90
Dear_Xuan
如需留言,请前往我的主页(随便点进一篇文章就有),在CSDN的留言没有通知
展开
-
人工智能基础-动态规划
动态规划与运筹学田忌赛马中,使用下等马对战上等马,使用上等马和中等马对战中等马和下等马,这就是运筹学的一个应用运筹学是应用数学的一个分支,用来解决决策问题,使用数学的方法来做出最佳安排,它在博弈论中也占据着重要地位动态规划是运筹学的一个分支,是计算最佳决策的过程,它的主要思想是“分解”和“记忆”,分解,即把一个问题分为多个相似的子问题;记忆,即保存已经计算出的结果,防止重复计算适用条件最优性原理若当前问题的决策是最优决策,那么子问题的决策也必须是最优决策无后效性原理子问题的决原创 2021-11-19 14:44:10 · 614 阅读 · 0 评论 -
人工智能基础-极大极小策略
博弈论博弈论是现代数学的一个分支,是用于研究竞争现象的数学工具。博弈策略是一套考虑到所有可能的情况而做出的行动。博弈论在人工智能方面有极大的价值。极大极小方法在下棋时,每一个棋盘布局都可以表示为一个节点,相邻的节点形成多叉树。每种布局都会对一方有利而对另一方不利,称节点的有利程度为价值。假设人类与计算机进行对决,并假设人类绝对聪明,那么在人类的回合,他会选择对计算机最不利的棋局,也就是价值最低的节点。而计算机则会选择对自己价值最高的节点。假设各节点的价值如下决策过程如下:计.原创 2021-11-13 11:29:07 · 5437 阅读 · 0 评论 -
人工智能基础-局部搜索算法
爬山算法爬山算法类似于贪心搜索,它每次都会查找附近节点里的最优节点,并移动到最优节点,如此循环便找到最优解,但是它只能找到局部的最优解,而非整体最优解。原创 2021-11-05 20:23:41 · 1569 阅读 · 0 评论 -
人工智能基础-搜索树的扩展与n皇后问题
回溯算法算法原理回溯算法的本质是DFS,但是在DFS的基础上多了剪枝函数,剪枝函数包括约束函数和限界函数,用于判断当前节点是否符合题意,如果不符合,则原路返回。由于多了判断,因此遍历的节点比DFS更少,速度也更快通常情况下,可以把问题的解转化成多叉树,当一个节点满足题意时,才会继续遍历它的子树,否则直接跳过当前节点约束函数约束函数用来排除不可能存在解的情况。例如四皇后问题中,分别在(0,0)和(2,1)位置放上皇后,此时整个棋盘只剩下(1,3)位置显然这种情况不满足题意,因此跳过原创 2021-10-27 21:13:30 · 981 阅读 · 2 评论 -
人工智能基础-路径规划
基础遍历算法深度优先遍历 DFS遍历一个节点,需要访问它自己,再遍历左子树和右子树,根据遍历顺序分为以下三种遍历前序遍历:先访问当前节点,再遍历左右子树 中序遍历:先遍历左子树,再访问自己,最后遍历右子树 后序遍历:先遍历左右子树,最后访问自己#include <iostream>struct _Node{ int num; _Node *lChild; _Node *rChild;};void 前序遍历(_Node *node){原创 2021-10-15 18:48:03 · 2267 阅读 · 1 评论 -
人工智能基础-图论初步
图的基本概念有序对和无序对设A,B为任意两个集合,则称{ {a,b} | a∈A Λ b∈B } 为A和B的无序积,记作A&B,{a,b}为无序对,且对于任意a,b,均有{a,b} = {b,a}同样的条件下,记<a,b>为有序对,它也可以写成集合的形式{ {a}, {a,b} }。<a1,b1>=<a2,b2>当且仅当a1=a2Λb1=b2无向图定义无向图G为一个有序的二元组<V,E>V是非空有穷集,称为顶点集,里面的元素称为原创 2021-10-14 17:01:38 · 982 阅读 · 0 评论