复数表示
z = ∣ z ∣ ( cos θ + i sin θ ) = ∣ z ∣ e i θ Re z = ∣ z ∣ cos θ Im z = ∣ z ∣ sin θ \large \begin{array}{ll} z = |z|(\cos \theta + i \sin \theta) = |z|e^{i\theta} \\ \text{Re }z = |z| \cos \theta \\ \text{Im }z = |z| \sin \theta \\ \end{array} z=∣z∣(cosθ+isinθ)=∣z∣eiθRe z=∣z∣cosθIm z=∣z∣sinθ
Arg z \text{Arg } z Arg z 表示复数 z z z 的辐角, 它有无穷多值, 任意两个值的差是 2 k π 2k\pi 2kπ, arg z \arg z argz 表示幅角主值, 一般认为 arg z ∈ ( − π , π ] \arg z \in (-\pi, \pi] argz∈(−π,π]
Ln z \text{Ln } z Ln z 表示对数, 同样有无穷多值, ln z \ln z lnz 表示对数主值.
共轭
z 1 ± z 2 ‾ = z 1 ‾ ± z 2 ‾ z 1 z 2 ‾ = z 1 ‾ ⋅ z 2 ‾ ( z 1 z 2 ) ‾ = z 1 ‾ z 2 ‾ ∣ z 1 z 2 ∣ = ∣ z 1 ∣ ⋅ ∣ z 2 ∣ \large \begin{array}{ll} \overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2} \\ \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2} \\ \overline{\left( \frac{z_1}{z_2} \right)} = \frac{\overline{z_1}}{\overline{z_2}} \\ |z_1 z_2| = |z_1| \cdot |z_2| \\ \end{array} z1±z2=z1±z2z1z2=z1⋅z2(z2z1)=z2z1∣z1z2∣=∣z1∣⋅∣z2∣
辐角
Arg ( z 1 z 2 ) = Arg z 1 + Arg z 2 Arg ( z 1 z 2 ) = Arg z 1 − Arg z 2 \large \begin{array}{ll} \text{Arg } (z_1 z_2) = \text{Arg } z_1 + \text{Arg } z_2 \\ \text{Arg } (\frac{z_1}{z_2}) = \text{Arg } z_1 - \text{Arg } z_2 \\ \end{array} Arg (z1z2)=Arg z1+Arg z2Arg (z2z1)=Arg z1−Arg z2
乘方
∣ z ∣ 2 = z ⋅ z ‾ z n = ∣ z ∣ n [ cos ( n θ ) + i sin ( n θ ) ] z − n = ∣ z ∣ − n [ cos ( − n θ ) + i sin ( − n θ ) ] z 1 n = ∣ z ∣ 1 n [ cos ( θ + 2 k π n ) + i sin ( θ + 2 k π n ) ] \large \begin{array}{ll} |z|^2 = z \cdot \overline{z} \\ z^n = |z|^n [\cos (n \theta) + i \sin (n \theta)] \\ z^{-n} = |z|^{-n} [\cos (-n \theta) + i \sin (-n \theta)] \\ z^{\frac1n} = |z|^{\frac1n} [\cos (\frac{\theta + 2k \pi}{n}) + i \sin (\frac{\theta + 2k \pi}{n})] \\ \end{array} ∣z∣2=z⋅zzn=∣z∣n[cos(nθ)+isin(nθ)]z−n=∣z∣−n[cos(−nθ)+isin(−nθ)]zn1=∣z∣n1[cos(nθ+2kπ)+isin(nθ+2kπ)]
曲线方程
平面曲线 $
C =
\left{
\begin{array}{ll}
x = x(t) \
y = y(t)
\end{array}
\right.
, t \in [\alpha, \beta]
$ 可表示为复数方程
z
=
z
(
t
)
=
x
(
t
)
+
i
y
(
t
)
z = z(t) = x(t) + iy(t)
z=z(t)=x(t)+iy(t), 若
x
′
(
t
)
,
y
′
(
t
)
x'(t), y'(t)
x′(t),y′(t) 存在连续且不为零, 则
C
C
C 为光滑曲线.
z 1 , z 2 z_1, z_2 z1,z2 所在的线段可表示为 z = z 1 + t ( z 2 − z 1 ) , t ∈ [ 0 , 1 ] z = z_1 + t(z_2 - z_1), t \in [0, 1] z=z1+t(z2−z1),t∈[0,1]
以 z 1 z_1 z1 为圆心, r r r 为半径的园可表示为 ∣ z − z 1 ∣ = r |z - z_1| = r ∣z−z1∣=r
复变函数
令 w = u + i v = f ( z ) = f ( x + i y ) w = u + iv = f(z) = f(x + iy) w=u+iv=f(z)=f(x+iy), 记 Re f ( z ) = u ( x , y ) , Im f ( z ) = v ( x , y ) \text{Re }f(z) = u(x, y), \text{Im }f(z) = v(x, y) Re f(z)=u(x,y),Im f(z)=v(x,y), 则 f ( z ) f(z) f(z) 可被拆为两个实函数: u = x 2 − y 2 , v = 2 x y , f ( z ) = u ( x , y ) + i v ( x , y ) u = x^2 - y^2, v = 2xy, f(z) = u(x, y) + iv(x, y) u=x2−y2,v=2xy,f(z)=u(x,y)+iv(x,y)
复数列 z n {z_n} zn 有极限的充要条件是 z ˉ n {\bar{z}_n} zˉn 有极限.
lim z → z 0 f ( z ) = A \lim\limits_{z \rightarrow z_0} f(z) = A z→z0limf(z)=A 的充要条件是 lim z → z 0 f ( z ) ‾ = A ‾ \lim\limits_{z \rightarrow z_0} \overline{f(z)} = \overline{A} z→z0limf(z)=A
lim z → z 0 f ( z ) = A \lim\limits_{z \rightarrow z_0} f(z) = A z→z0limf(z)=A 的充要条件是 lim z → z 0 Re f ( z ) = Re A , lim z → z 0 Im f ( z ) = Im A \lim\limits_{z \rightarrow z_0} \text{Re } f(z) = \text{Re } A, \lim\limits_{z \rightarrow z_0} \text{Im } f(z) = \text{Im } A z→z0limRe f(z)=Re A,z→z0limIm f(z)=Im A
解析函数
f ( z ) = u ( x , y ) + i v ( x , y ) f(z) = u(x, y) + iv(x, y) f(z)=u(x,y)+iv(x,y) 在区域 D D D 内一点 z = x + i y z = x + iy z=x+iy 可微的充要条件是 u ( x , y ) , v ( x , y ) u(x, y), v(x, y) u(x,y),v(x,y) 在 D D D 内可微, 且
{ ∂ u ∂ x = ∂ v ∂ y ∂ u ∂ y = − ∂ v ∂ x \Large \left\{ \begin{array}{ll} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\\\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{array} \right. ⎩ ⎨ ⎧∂x∂u=∂y∂v∂y∂u=−∂x∂v
该条件称为 柯西-黎曼(Cauchy-Riemann)条件, 简称 C-R条件.
当 f ( z ) f(z) f(z) 可微时, 有
f ′ ( z ) = ∂ u ∂ x + i ∂ v ∂ x f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} f′(z)=∂x∂u+i∂x∂v
当复变函数 f ( z ) f(z) f(z) 是以含 z z z 的表达式表示时, 直接使用初等函数的导数公式即可.
特殊函数
指数函数
w = e z = e x + i y = e x ( cos y + i sin y ) w = e^z = e^{x+iy} = e^x (\cos y + i \sin y) w=ez=ex+iy=ex(cosy+isiny)
对于任意复数, 都有 e z ≠ 0 , ∣ e z ∣ = e x > 0 e^z \neq 0, |e^z| = e^x > 0 ez=0,∣ez∣=ex>0.
该函数周期是 2 π i 2\pi i 2πi, e z + 2 π i = e z e^{z + 2 \pi i} = e^z ez+2πi=ez.
三角函数
sin z = 1 2 i ( e i z − e − i z ) cos z = 1 2 ( e i z + e − i z ) \large \begin{array}{ll} \sin z = \frac{1}{2i}(e^{iz} - e^{-iz}) \\\\ \cos z = \frac{1}{2}(e^{iz} + e^{-iz}) \end{array} sinz=2i1(eiz−e−iz)cosz=21(eiz+e−iz)
以上两个函数的周期均为 2 π 2\pi 2π.
cos ( z 1 + z 2 ) = cos z 1 cos z 2 − sin z 1 sin z 2 sin ( z 1 + z 2 ) = sin z 1 cos z 2 − cos z 1 sin z 2 e i z = cos z + i sin z sin 2 z + cos 2 z = 1 ∣ sin z ∣ , ∣ cos z ∣ ∈ [ 0 , + ∞ ) \large \begin{array}{} \cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2 \\\\ \sin(z_1 + z_2) = \sin z_1 \cos z_2 - \cos z_1 \sin z_2 \\\\ e^{iz} = \cos z + i \sin z \\\\ \sin^2 z + \cos^2 z = 1 \\\\ |\sin z|, |\cos z| \in [0, +\infty) \end{array} cos(z1+z2)=cosz1cosz2−sinz1sinz2sin(z1+z2)=sinz1cosz2−cosz1sinz2eiz=cosz+isinzsin2z+cos2z=1∣sinz∣,∣cosz∣∈[0,+∞)
对数函数
复数 z z z 的对数表示为 Ln z \text{Ln } z Ln z.
Ln z = ln ∣ z ∣ + i Arg z = ln r + i ( θ + 2 k π ) Ln z = ln z + 2 k π i ln z = ln ∣ z ∣ + i arg z w = α z = e z Ln α \text{Ln } z = \ln |z| + i \text{Arg } z = \ln r + i(\theta + 2k\pi) \\\\ \text{Ln } z = \ln z + 2k\pi i \\\\ \ln z = \ln |z| + i \arg z \\\\ w = \alpha^{z} = e^{z\text{Ln }\alpha} Ln z=ln∣z∣+iArg z=lnr+i(θ+2kπ)Ln z=lnz+2kπilnz=ln∣z∣+iargzw=αz=ezLn α
当求 β α \beta^\alpha βα ( α , β \alpha, \beta α,β 为复数)时, 一般转换成 e α Ln β \large e^{\alpha \text{Ln }\beta} eαLn β.
幂函数
w = z α = e α Ln z w = z^\alpha = e^{\alpha \text{Ln }z} w=zα=eαLn z 为一般幂函数.
当 α \alpha α 是整数时:
w = z α = e α ( ln z + 2 k π i ) w = z^{\alpha} = e^{\alpha (\ln z + 2k\pi i)} w=zα=eα(lnz+2kπi)
当 α \alpha α 是既约分数 m n \Large\frac mn nm 时:
w = z α = e m n ln ∣ z ∣ + i ( m n θ + 2 k π ) = ∣ z ∣ m n [ cos m ( θ + 2 k π ) n + i sin m ( θ + 2 k π ) n ] \begin{array}{ll} w &= {\large z^{\alpha} = e^{\frac mn \ln |z| + i (\frac mn \theta + 2k\pi)}} \\ &= {\large \sqrt[n]{|z|^m} \left[ \cos \frac{m(\theta + 2k\pi)}{n} + i\sin \frac{m(\theta + 2k\pi)}{n} \right]} \end{array} w=zα=enmln∣z∣+i(nmθ+2kπ)=n∣z∣m[cosnm(θ+2kπ)+isinnm(θ+2kπ)]
当 α \alpha α 为无理数或虚数时:
w = z α = e α ( ln ∣ z ∣ + i θ + 2 k π i ) \large w = z^\alpha = e^{\alpha(\ln|z| + i \theta + 2k\pi i)} w=zα=eα(ln∣z∣+iθ+2kπi)
并且对于任意 k 1 ≠ k 2 k_1 \neq k_2 k1=k2, 必有 e 2 α k 1 π i ≠ e 2 α k 2 π i e^{2\alpha k_1\pi i} \neq e^{2\alpha k_2\pi i} e2αk1πi=e2αk2πi.
复变函数的积分
复变函数的积分一般是沿复平面上的曲线积分.
若有函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z) = u(x, y) + iv(x, y) f(z)=u(x,y)+iv(x,y), 则:
∫ C f ( z ) d z = ∫ C ( u + i v ) ( d x + i d y ) = ∫ C ( u d x − v d y ) + i ∫ C ( v d x + u d y ) \begin{array}{ll} &\displaystyle \int_C f(z)dz \\\\ =&\displaystyle \int_C (u+iv)(dx+idy) \\\\ =&\displaystyle \int_C (udx-vdy) + i\int_C (vdx+udy) \end{array} ==∫Cf(z)dz∫C(u+iv)(dx+idy)∫C(udx−vdy)+i∫C(vdx+udy)
若 z = z ( t ) + i y ( t ) z = z(t) + iy(t) z=z(t)+iy(t), 则:
∫ C f ( z ) d z = ∫ α β f [ z ( t ) ] z ′ ( t ) d t \int_C f(z) dz = \int_\alpha^\beta f[z(t)] z'(t) dt ∫Cf(z)dz=∫αβf[z(t)]z′(t)dt
实函数的积分计算规则在复变函数中仍然适用.
牛顿-莱布尼茨公式
若 f f f 在区域 Ω \Omega Ω 上连续, g g g 在 Ω \Omega Ω 上解析, g ′ ( z ) = f ( z ) g'(z) = f(z) g′(z)=f(z), 则称 g ( z ) g(z) g(z) 为 f ( z ) f(z) f(z) 的原函数或不定积分.
若 C : z = z ( t ) = x ( t ) + i y ( t ) , ( α ≤ t ≤ β ) C: z = z(t) = x(t) + iy(t),(\alpha \leq t \leq \beta) C:z=z(t)=x(t)+iy(t),(α≤t≤β) 的起点是 a = z ( α ) a = z(\alpha) a=z(α), 终点是 b = z ( β ) b = z(\beta) b=z(β), 则:
∫ C f ( z ) d z = g ( b ) − g ( a ) \int_C f(z)dz = g(b) -g(a) ∫Cf(z)dz=g(b)−g(a)
柯西定理
若 f ( z ) f(z) f(z) 在单连通区域 D D D 解析, 则 D D D 内任一闭路(围线) C C C, 有 ∫ C f ( z ) d z = 0 \displaystyle\int_C f(z)dz = 0 ∫Cf(z)dz=0.
若复连通区域 D D D 的边界是 C 0 C_0 C0, 内部含有多个单连通区域 C 1 , C 2 , ⋯ , C n C_1, C_2, \cdots, C_n C1,C2,⋯,Cn, 则 D D D 的边界是一条复合闭路 C = C 0 + C 1 − + ⋯ + C n − C = C_0 + C_1^- + \cdots + C_n^- C=C0+C1−+⋯+Cn−. 有:
∫ C 0 f ( z ) d z + ∫ C 1 − f ( z ) d z + ⋯ + ∫ C n − f ( z ) d z = 0 \int_{C_0} f(z)dz + \int_{C_1^{\bm{-}}} f(z)dz + \cdots + \int_{C_n^{\bm{-}}} f(z)dz = 0 ∫C0f(z)dz+∫C1−f(z)dz+⋯+∫Cn−f(z)dz=0
也可以写成:
∫ C 0 f ( z ) d z = ∫ C 1 − f ( z ) d z + ⋯ + ∫ C n − f ( z ) d z \int_{C_0} f(z)dz = \int_{C_1^{\bm{-}}} f(z)dz + \cdots + \int_{C_n^{\bm{-}}} f(z)dz ∫C0f(z)dz=∫C1−f(z)dz+⋯+∫Cn−f(z)dz
也就是说, 求复连通区域的积分, 只要分别求出内部各个单连通区域的积分, 然后把它们加起来即可.
若区域 D D D 的边界是闭路 C C C, f ( z ) f(z) f(z) 在 D D D 内解析, 在 D ‾ = D + C \overline{D} = D + C D=D+C 上连续, 则:
f ( z 0 ) = 1 2 π i ∫ C f ( z ) z − z 0 d z , z 0 ∈ D , z ∈ C f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-z_0}dz, z_0 \in D, z \in C f(z0)=2πi1∫Cz−z0f(z)dz,z0∈D,z∈C
这意味着分式的积分可以转化成单个复变函数来计算, 下面是一个例子:
给定曲线 C : ∣ z ∣ = 1 C: |z|=1 C:∣z∣=1, 有:
∫ C e z z ( z − 2 ) d z = ∫ C ( e z z − 2 ) z d z = 2 π i e z z − 2 ∣ z = 0 = − π i \int_C \frac{e^z}{z(z-2)}dz = {\large \int_C \frac{\left( \frac{e^z}{z-2} \right)}{z}}dz = 2\pi i \frac{e^z}{z-2} \bigg|_{z=0} = -\pi i ∫Cz(z−2)ezdz=∫Cz(z−2ez)dz=2πiz−2ez z=0=−πi
原函数与高阶导数
若函数 f ( z ) f(z) f(z) 在单连通区域 D D D 解析, f ( z ) f(z) f(z) 沿 D D D 内点 z 0 z_0 z0 到 z z z 的积分与连接两点的曲线无关, 当 z 0 z_0 z0 选定后, 积分由 z z z 唯一确定, 因此该积分是一个单值函数, 记为:
F ( z ) = ∫ z 0 z f ( ξ ) d ξ F(z) = \int_{z_0}^{z} f(\xi)d\xi F(z)=∫z0zf(ξ)dξ
一般情况下, 实函数的积分规则可以直接用于复变函数, 如分部积分:
∫ 1 π i z e z d z = z e z ∣ 1 π i − ∫ 1 π i e z d z = [ − π i − e ] − [ − 1 − e ] = 1 − π i \int_1^{\pi i} ze^zdz = ze^z \bigg|_1^{\pi i} - \int_1^{\pi i} e^zdz = [-\pi i - e] - [-1 - e] = 1 - \pi i ∫1πizezdz=zez 1πi−∫1πiezdz=[−πi−e]−[−1−e]=1−πi
f ( z ) f(z) f(z) 的任意阶导数为:
f ( n ) ( z ) = n ! 2 π i ∫ C f ( ξ ) ( ξ − z ) n + 1 d ξ f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z)^{n+1}}d\xi f(n)(z)=2πin!∫C(ξ−z)n+1f(ξ)dξ
柯西不等式在复变函数的推广: 若 f ( z ) f(z) f(z) 在 D D D 解析, a a a 为 D D D 内一点, C R : ∣ z − a ∣ = R C_R: |z-a|=R CR:∣z−a∣=R, K ‾ R : ∣ z − a ∣ ≤ R \overline{K}_R: |z-a| \leq R KR:∣z−a∣≤R, 则
∣ ∫ ( n ) ( a ) ∣ ≤ n ! R n M R , M R = max ∣ z − a ∣ = R ∣ f ( z ) ∣ \left| \int^{(n)}(a) \right| \leq \frac{n!}{R^n}M_R, M_R = \max_{|z-a|=R}\left|f(z)\right| ∫(n)(a) ≤Rnn!MR,MR=∣z−a∣=Rmax∣f(z)∣
当 R → + ∞ R \rightarrow +\infty R→+∞, 若取 n = 1 n=1 n=1, 则 ∣ f ′ ( a ) ∣ ≤ M R R \displaystyle |f'(a)| \leq \frac{M_R}{R} ∣f′(a)∣≤RMR, 当 f ( a ) f(a) f(a) 有界时, 必有 M R ≤ M M_R \leq M MR≤M, 即 ∣ f ′ ( a ) ∣ ≤ 0 |f'(a)| \leq 0 ∣f′(a)∣≤0, 因此 f ( z ) f(z) f(z) 必为常数.
关于复数 z z z 的多项式 p ( z ) = a 0 z n + a 1 z n − 1 + ⋯ + a n − 1 z + a 0 p(z) = a_0z^n + a_1z^{n-1} + \cdots + a_{n-1}z + a_0 p(z)=a0zn+a1zn−1+⋯+an−1z+a0 至少有一个零点.