文本情感分析学习篇(三)
题目:Word2Vec+LSTM多类情感分类算法优化
文献:邬明强,邬佳明,辛伟彬.Word2Vec+LSTM 多类别情感分类算法优化.计算机系统应用,2020,29(1):130–136.
http://www.c-s-a.org.cn/1003-3254/7227.html
- 三分类的情感分类模型:消极 积极 中性
- 相对于Word2Vec+SVM准确率提高了10%
- Word2Vec之前是one-hot编码方式
- Jieba库 lcut 进行句子切分,多为向量表征词语,20维向量就可以表征1048576个词语,通过欧式距离或余弦相似度来表示词之间的距离。
- LSTM之前是RNN,因为RNN不具有长距离记忆能力,LSTM设计记住长期的信息。用“控制门的思想实现的

- 分类流程:Word2Vec分词,词向量对应句子,得到句子的表征句向量
- 句向量作为神经网络的输入部分

本文探讨了Word2Vec+LSTM的情感分类算法优化,相较于Word2Vec+SVM,准确率提升了10%。同时介绍了基于BERT-LDA模型的新冠肺炎舆情演化仿真,通过结合LDA解决BERT的情感分析问题,利用微博和百度贴吧情感语料进行预训练,以提高模型效果。实验表明,改进后的模型在情感分析中表现更优。
最低0.47元/天 解锁文章
9932

被折叠的 条评论
为什么被折叠?



