基于ISODATA算法的IRIS聚类

机器学习 同时被 2 个专栏收录
4 篇文章 0 订阅
2 篇文章 0 订阅

一、 实验介绍

ISODATA算法的全称是Iterative Self-Organizing Data Analysis Techniques Algorithm,中文译名为“迭代自组织的数据分析算法”。ISODATA算法的特点是可以通过类的自动合并(两类合一)与分裂(一类分为二),得到较合理的类型数目c;属于动态聚类算法,相较于传统的C-均值聚类,类型数目可变,但也较为复杂。

IRIS数据是由鸢尾属植物的三种单独的花的测量结果所组成,模式类别数为3,特征维数是4,每类各有50个模式样本,总共有150个样本。

本次实验将IRIS数据的150个样本看做混合样本,使用ISODATA聚类算法对其进行聚类分析,实验所使用的的软件为Matlab R2016a。

一、 算法原理

ISODATA聚类算法在别的博客已经很清楚了,这里不再赘述。其中涉及到的参数如下:

给定控制参数:

k:预期的聚类中心数目;

qn:每一聚类中最少的样本数目,如果少于此数就不能作为一个独立的聚类;

qs:一个聚类域中样本距离分布的标准差(阈值);

qc:两个聚类中心之间的最小距离,如果小于此数,两个聚类合并;

L:每次迭代允许合并的最大聚类对数目;

I:允许的最多迭代次数;
算法流程图
在这里插入图片描述
在这里插入图片描述

其中IRIS数据与程序的代码都在本人的资源当中,需要的小伙伴可以自行下载,打开就完全可以使用的哦!
https://download.csdn.net/download/qq_39217683/11221334

  • 3
    点赞
  • 5
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值