博客基于Xgboost方法对糖尿病遗传预测风险进行预测,实际上是对人体血糖值的预测。论文以天池精准医疗大赛——人工智能辅助糖尿病遗传风险预测为背景,对其提供的数据进行人体血糖值进行预测。
本质而言是使用XGBOOST进行数据的一个回归。
数据集部分:
原始数据包含了病人的一些个人信息,以及医疗测试的部分数据,最后一列“血糖”值则是我们需要进行预测的部分。
数据预处理:
利用真实世界的数据进行疾病的预测会遇到很多问题,例如:
①数据质量差:电子数据中很多字段有缺失,导致关键特征无法提取;甚至有无意或有意的输入错误,给数据分析造成了噪音;
②数据维度高:医疗的数据涉及患者的体格检查信息,就本次实验而言包含40个信息需要进行分析。
因此不能直接使用数据进行操作,在模型构建之前需要进行数据预处理,本次实验对数据进行的预处理包括如下操作:
(1)缺失值处理:正如前文所说,训练的数据集往往会带有一定程度的缺失,例如数据存储失败、机械故障、数据遗漏、隐瞒数据等都会导致这一现象。如果缺失项只是很少的一部分,可以对其进行忽略,但是当缺失项很多时就需要进行缺失值的填补来保证模型的正确构建。由于本文是对医疗数据进行处理,所以采用中数进行填补,这样可以不受数据极端值的影响;并且为了避免训练集和测试集的差异带来的影响,可以选择取该项所有数据的中数来避免较大的误差。
(2)性别二分类化:糖尿病作为一组