浅谈对HashMap初始化,put,扩容的理解

1、 初始化

   public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; 
    }

   public HashMap(int initialCapacity) {
   // DEFAULT_LOAD_FACTOR 默认容量16
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

   public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

loadFactor:装载因子,默认为0.75。当现存容量大于初始化容量*装载因子时,发生扩容。
threshold :扩容阈值,扩容时值等于初始化容量 *装载因子。

tableSizeFor
static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

返回大于等于给定容量,且最接近的2的冥次方数,即hash表的长度为2的冥次方数。为什么呢?存入数计算散列地址为: (n - 1) & hash (n为Map容量)。由于 2^n-1 在二进制下每一位都等于1,与hash值与操作时,能让散列值更分散均匀。

举例:

hash\n-11111 (15)1110 (14)
1000(8)10001000
1001(9)10011000

可以看出当n不为2的冥次方数,更容易发生碰撞(计算所得散列值相同)。

2、 put操作

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
        // 初始化散列表
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;            
            // 通过hash和(key地址或key.equals)比较链头与插入key是否相同。
            
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
             // 链头为树形节点,则树形插入
             
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {           
                 // 如何next节点为空,则插入
                 
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);     
                        // 链表长度大于8时,将链转化为红黑树
                        
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }                   
                    // 通过hash和(key地址或key.equals)比较节点与插入key是否相同。
                    
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { 
                V oldValue = e.value;
               // e不为null,存在相同key的键 ,则替换
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 当现存容量大于扩容阈值时,扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

小结:put时,当存入key已存在,更新节点vlaue值;当链长度大于8时,链转化为红黑树;当当现存容量大于扩容阈值时,发生扩容。

3、扩容

resize()方法

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        //扩容
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // oldCap 左移1位
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)           
                newThr = oldThr << 1; // double threshold
        }
        // 初始化 设定了容量
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        // 初始化 未设定容量 使用默认值
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                // 链头不为空
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            //相当于hash小于oldCap
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

主要作用:

  1. 计算扩容后的容量与阈值。
  2. 重分配hash链。对于hash小于扩容前容量,存放在新数组的下标与以前的下标地址相同。对于hash大于或等于扩容前容量,存放在新数组的下标等于以前的下标地址偏移oldCap。
    举例:
    初始容量 16 ,2倍扩容后容量为32 。
    对于hash为 1的情况,扩容前后计算所得散列地址值相同。
    对于hash为17的情况,扩容前后计算所得散列地址值不相同,下标需要偏移oldCap。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值