电商用户行为可视化分析

  1. 导入数据
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 步骤一(替换sans-serif字体)
plt.rcParams['axes.unicode_minus'] = False  # 步骤二(解决坐标轴负数的负号显示问题)
  1. 了解数据
user = pd.read_csv('E:/学习/fresh_comp_offline/tianchi_fresh_comp_train_user.csv')
user.info()

在这里插入图片描述

user.head() 
# '''
# user_id用户标识,
# item_id 商品标识,
# behavior_type,用户对商品的行为类型 包括浏览、收藏、加购物车、购买,对应取值分别是1、2、3、4。
# user_geohash 用户位置的空间标识,可以为空 由经纬度通过保密的算法生成
# item_category 商品分类标识 字段脱敏
# time 行为时间 精确到小时级别
# '

在这里插入图片描述

# 查看统计信息
user.describe()

在这里插入图片描述

# 查看缺失值
user.isnull().sum()

在这里插入图片描述
3. 处理数据

user.duplicated().sum()
# 删除重复值
user.drop_duplicates(keep='last',inplace=True)
user.info() # 查看是否删除了重复值

在这里插入图片描述

# 将时间转换为datetime格式
user['time'] = pd.to_datetime(user['time'])
user.head()

在这里插入图片描述

# 提取出日期、月、年
user['dates'] = user.time.dt.date
user['month'] = user.dates.values.astype('datetime64[M]')
user['hours'] = user.time.dt.hour
user.head()

在这里插入图片描述

# 转换数据类型
user['behavior_type'] = user['behavior_type'].apply(str)
user['user_id'] = user['user_id'].apply(str)
user['item_id'] = user['item_id'].apply(str)
user.info()

在这里插入图片描述
4. 数据可视化
4.1 统计每日PV和UV数据

# 统计每日PV数据
pv_day = user[user.behavior_type=='1'].groupby('dates')['behavior_type'
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值