编写高性能的Java代码需要注意的4个问题

一、并发
Unable to create new native thread ……
问题1:Java中创建一个线程消耗多少内存?
每个线程有独自的栈内存,共享堆内存
问题2:一台机器可以创建多少线程?
CPU,内存,操作系统,JVM,应用服务器
我们编写一段示例代码,来验证下线程池与非线程池的区别:
//线程池和非线程池的区别
public class ThreadPool {

 public static int times = 100;//100,1000,10000

 public static ArrayBlockingQueue arrayWorkQueue = new ArrayBlockingQueue(1000);
 public static ExecutorService threadPool = new ThreadPoolExecutor(5, //corePoolSize线程池中核心线程数
         10,
         60,
         TimeUnit.SECONDS,
         arrayWorkQueue,
         new ThreadPoolExecutor.DiscardOldestPolicy()
 );

 public static void useThreadPool() {
     Long start = System.currentTimeMillis();
     for (int i = 0; i < times; i++) {
         threadPool.execute(new Runnable() {
             public void run() {
                 System.out.println("说点什么吧...");
             }
         });
     }
     threadPool.shutdown();
     while (true) {
         if (threadPool.isTerminated()) {
             Long end = System.currentTimeMillis();
             System.out.println(end - start);
             break;
         }
     }
 }

 public static void createNewThread() {
     Long start = System.currentTimeMillis();
     for (int i = 0; i < times; i++) {

         new Thread() {
             public void run() {
                 System.out.println("说点什么吧...");
             }
         }.start();
     }
     Long end = System.currentTimeMillis();
     System.out.println(end - start);
 }

 public static void main(String args[]) {
     createNewThread();
     //useThreadPool();
 }

}

启动不同数量的线程,然后比较线程池和非线程池的执行结果:
非线程池 线程池
100次 16ms 5ms
1000次 90ms 28ms
10000次 1329ms 164ms
结论:不要new Thread(),采用线程池
非线程池的缺点:
每次创建性能消耗大
无序,缺乏管理。容易无限制创建线程,引起OOM和死机
1.1 使用线程池要注意的问题
避免死锁,请尽量使用CAS
我们编写一个乐观锁的实现示例:
public class CASLock {

 public static int money = 2000;

 public static boolean add2(int oldm, int newm) {
     try {
         Thread.sleep(2000);
     } catch (InterruptedException e) {
         e.printStackTrace();
     }
     if (money == oldm) {
         money = money + newm;
         return true;
     }
     return false;
 }

 public synchronized static void add1(int newm) {
     try {
         Thread.sleep(3000);
     } catch (InterruptedException e) {
         e.printStackTrace();
     }
     money = money + newm;
 }

 public static void add(int newm) {
     try {
         Thread.sleep(3000);
     } catch (InterruptedException e) {
         e.printStackTrace();
     }
     money = money + newm;
 }

 public static void main(String args[]) {
     Thread one = new Thread() {
         public void run() {
             //add(5000)
             while (true) {
                 if (add2(money, 5000)) {
                     break;
                 }
             }
         }
     };
     Thread two = new Thread() {
         public void run() {
             //add(7000)
             while (true) {
                 if (add2(money, 7000)) {
                     break;
                 }
             }
         }
     };
     one.start();
     two.start();
     try {
         one.join();
         two.join();
     } catch (InterruptedException e) {
         e.printStackTrace();
     }
     System.out.println(money);
 }

}

使用ThreadLocal要注意
ThreadLocalMap使用ThreadLocal的弱引用作为key,如果一个ThreadLocal没有外部强引用来引用它,那么系统 GC 的时候,这个ThreadLocal势必会被回收,这样一来,ThreadLocalMap中就会出现key为null的Entry,就没有办法访问这些key为null的Entry的value,如果当前线程再迟迟不结束的话,这些key为null的Entry的value就会一直存在一条强引用链:Thread Ref -> Thread -> ThreaLocalMap -> Entry -> value永远无法回收,造成内存泄漏。
我们编写一个ThreadLocalMap正确使用的示例:
//ThreadLocal应用实例
public class ThreadLocalApp {

 public static final ThreadLocal threadLocal = new ThreadLocal();

 public static void muti2() {
     int i[] = (int[]) threadLocal.get();
     i[1] = i[0] * 2;
     threadLocal.set(i);
 }

 public static void muti3() {
     int i[] = (int[]) threadLocal.get();
     i[2] = i[1] * 3;
     threadLocal.set(i);
 }

 public static void muti5() {
     int i[] = (int[]) threadLocal.get();
     i[3] = i[2] * 5;
     threadLocal.set(i);
 }

 public static void main(String args[]) {
     for (int i = 0; i < 5; i++) {
         new Thread() {
             public void run() {
                 int start = new Random().nextInt(10);
                 int end[] = {0, 0, 0, 0};
                 end[0] = start;
                 threadLocal.set(end);
                 ThreadLocalApp.muti2();
                 ThreadLocalApp.muti3();
                 ThreadLocalApp.muti5();
                 //int end = (int) threadLocal.get();
                 System.out.println(end[0] + "  " + end[1] + "  " + end[2] + "  " + end[3]);
                 threadLocal.remove();
             }
         }.start();
     }
 }

}

1.2 线程交互—线程不安全造成的问题
经典的HashMap死循环造成CPU100%问题
我们模拟一个HashMap死循环的示例:
//HashMap死循环示例
public class HashMapDeadLoop {

 private HashMap hash = new HashMap();

 public HashMapDeadLoop() {
     Thread t1 = new Thread() {
         public void run() {
             for (int i = 0; i < 100000; i++) {
                 hash.put(new Integer(i), i);
             }
             System.out.println("t1 over");
         }
     };

     Thread t2 = new Thread() {
         public void run() {
             for (int i = 0; i < 100000; i++) {
                 hash.put(new Integer(i), i);
             }
             System.out.println("t2 over");
         }
     };
     t1.start();
     t2.start();
 }

 public static void main(String[] args) {
     for (int i = 0; i < 1000; i++) {
         new HashMapDeadLoop();
     }
     System.out.println("end");
 }

}
https://coolshell.cn/articles/9606.html

HashMap死循环发生后,我们可以在线程栈中观测到如下信息:
/HashMap死循环产生的线程栈
Thread-281" #291 prio=5 os_prio=31 tid=0x00007f9f5f8de000 nid=0x5a37 runnable [0x0000700006349000]
java.lang.Thread.State: RUNNABLE
at java.util.HashMap$TreeNode.split(HashMap.java:2134)
at java.util.HashMap.resize(HashMap.java:713)
at java.util.HashMap.putVal(HashMap.java:662)
at java.util.HashMap.put(HashMap.java:611)
at com.example.demo.HashMapDeadLoop$2.run(HashMapDeadLoop.java:26)

应用停滞的死锁,Spring3.1的deadlock 问题
我们模拟一个死锁的示例:
//死锁的示例
public class DeadLock {
public static Integer i1 = 2000;
public static Integer i2 = 3000;
public static synchronized Integer getI2() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return i2;
}
public static void main(String args[]) {
Thread one = new Thread() {
public void run() {
synchronized (i1) {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (i2) {
System.out.println(i1 + i2);
}
}
}
};
one.start();
Thread two = new Thread() {
public void run() {
synchronized (i2) {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (i1) {
System.out.println(i1 + i2);
}
}
}
};
two.start();
}
}

死锁发生后,我们可以在线程栈中观测到如下信息:
//死锁时产生堆栈
“Thread-1”:
at com.example.demo.DeadLock$2.run(DeadLock.java:47)
- waiting to lock (a java.lang.Integer)
- locked (a java.lang.Integer)
“Thread-0”:
at com.example.demo.DeadLock$1.run(DeadLock.java:31)
- waiting to lock (a java.lang.Integer)
- locked (a java.lang.Integer)
Found 1 deadlock.

1.3 基于JUC的优化示例
一个计数器的优化,我们分别用Synchronized,ReentrantLock,Atomic三种不同的方式来实现一个计数器,体会其中的性能差异
//示例代码
public class SynchronizedTest {

 public static int threadNum = 100;
 public static int loopTimes = 10000000;

 public static void userSyn() {
     //线程数
     Syn syn = new Syn();
     Thread[] threads = new Thread[threadNum];
     //记录运行时间
     long l = System.currentTimeMillis();
     for (int i = 0; i < threadNum; i++) {
         threads[i] = new Thread(new Runnable() {
             @Override
             public void run() {
                 for (int j = 0; j < loopTimes; j++) {
                     //syn.increaseLock();
                     syn.increase();
                 }
             }
         });
         threads[i].start();
     }
     //等待所有线程结束
     try {
         for (int i = 0; i < threadNum; i++)
             threads[i].join();
     } catch (InterruptedException e) {
         e.printStackTrace();
     }
     System.out.println("userSyn" + "-" + syn + " : " + (System.currentTimeMillis() - l) + "ms");
 }

 public static void useRea() {
     //线程数
     Syn syn = new Syn();
     Thread[] threads = new Thread[threadNum];
     //记录运行时间
     long l = System.currentTimeMillis();
     for (int i = 0; i < threadNum; i++) {
         threads[i] = new Thread(new Runnable() {
             @Override
             public void run() {
                 for (int j = 0; j < loopTimes; j++) {
                     syn.increaseLock();
                     //syn.increase();
                 }
             }
         });
         threads[i].start();
     }
     //等待所有线程结束
     try {
         for (int i = 0; i < threadNum; i++)
             threads[i].join();
     } catch (InterruptedException e) {
         e.printStackTrace();
     }
     System.out.println("userRea" + "-" + syn + " : " + (System.currentTimeMillis() - l) + "ms");
 }
public static void useAto() {
     //线程数
     Thread[] threads = new Thread[threadNum];
     //记录运行时间
     long l = System.currentTimeMillis();
     for (int i = 0; i < threadNum; i++) {
         threads[i] = new Thread(new Runnable() {
             @Override
             public void run() {
                 for (int j = 0; j < loopTimes; j++) {
                     Syn.ai.incrementAndGet();
                 }
             }
         });
         threads[i].start();
     }
     //等待所有线程结束
     try {
         for (int i = 0; i < threadNum; i++)
             threads[i].join();
     } catch (InterruptedException e) {
         e.printStackTrace();
     }
     System.out.println("userAto" + "-" + Syn.ai + " : " + (System.currentTimeMillis() - l) + "ms");
 }

 public static void main(String[] args) {
     SynchronizedTest.userSyn();
     SynchronizedTest.useRea();
     SynchronizedTest.useAto();
 }

}

class Syn {
private int count = 0;
public final static AtomicInteger ai = new AtomicInteger(0);

 private Lock lock = new ReentrantLock();

 public synchronized void increase() {
     count++;
 }

 public void increaseLock() {
     lock.lock();
     count++;
     lock.unlock();
 }

 @Override
 public String toString() {
     return String.valueOf(count);
 }

}

结论,在并发量高,循环次数多的情况,可重入锁的效率高于Synchronized,但最终Atomic性能最好。
二、通信
2.1 数据库连接池的高效问题
一定要在finally中close连接
一定要在finally中release连接
2.2 OIO/NIO/AIO
OIO NIO AIO
类型 阻塞 非阻塞 非阻塞
使用难度 简单 复杂 复杂
可靠性 差 高 高
吞吐量 低 高 高
结论:我性能有严苛要求下,尽量应该采用NIO的方式进行通信。
2.3 TIME_WAIT(client),CLOSE_WAIT(server)问题
反应:经常性的请求失败
获取连接情况 netstat -n | awk ‘/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}’
TIME_WAIT:表示主动关闭,优化系统内核参数可。
CLOSE_WAIT:表示被动关闭。
ESTABLISHED:表示正在通信
解决方案:二阶段完成后强制关闭
2.4 串行连接,持久连接(长连接),管道化连接
在这里插入图片描述
结论:
管道连接的性能最优异,持久化是在串行连接的基础上减少了打开/关闭连接的时间。
管道化连接使用限制:
1、HTTP客户端无法确认持久化(一般是服务器到服务器,非终端使用);
2、响应信息顺序必须与请求信息顺序一致;
3、必须支持幂等操作才可以使用管道化连接.
三、数据库操作
必须要有索引(特别注意按时间查询)
单条操作or批量操作
注:很多程序员在写代码的时候随意采用了单条操作的方式,但在性能要求前提下,要求采用批量操作方式。
四、JVM
4.1 CPU标高的一般处理步骤
top查找出哪个进程消耗的cpu高
top –H –p查找出哪个线程消耗的cpu高
记录消耗cpu最高的几个线程
printf %x 进行pid的进制转换
jstack记录进程的堆栈信息
找出消耗cpu最高的线程信息
4.2 内存标高(OOM)一般处理步骤
jstat命令查看FGC发生的次数和消耗的时间,次数越多,耗时越长说明存在问题;
连续查看jmap –heap 查看老生代的占用情况,变化越大说明程序存在问题;
使用连续的jmap –histo:live 命令导出文件,比对加载对象的差异,差异部分一般是发生问题的地方。
4.3 GC引起的单核标高
单个CPU占用率高,首先从GC查起。
4.4 常见SY标高
线程上下文切换频繁
线程太多
锁竞争激烈
4.5 Iowait标高
如果IO的CPU占用很高,排查涉及到IO的程序,比如把OIO改造成NIO。
4.6 抖动问题
原因:字节码转为机器码需要占用CPU时间片,大量的CPU在执行字节码时,导致CPU长期处于高位;
现象:“C2 CompilerThread1” daemon,“C2 CompilerThread0” daemon CPU占用率最高;
解决办法:保证编译线程的CPU占比。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值