参考链接–简书
参考链接–csdn
介绍
一个图就是一些顶点的集合,这些顶点通过一系列边结对(连接)。
顶点用圆圈表示,边就是这些圆圈之间的连线。顶点之间通过边连接。
注意:顶点有时也称为节点或者交点,边有时也称为链接。
定义
图G由顶点集V和边集E组成,记为G=(V,E),其中V(G)表示图G中顶点的有限非空集;E(G)表示图G中顶点之间的关系(边)的集合
注:图可以没有边,但是至少要有一个顶点
权重
边可以有权重(weight),即每一条边会被分配一个正数或者负数值。考虑一个代表航线的图。各个城市就是顶点,航线就是边。那么边的权重可以是飞行时间,或者机票价格。
方向
边可以是有方向的。有方向的边意味着是单方面的关系。一条从顶点 X 到 顶点 Y 的边是将 X 联向 Y,不是将 Y 联向 X。
以航班为例,从旧金山到阿拉斯加的朱诺有向边意味着从旧金山到朱诺有航班,但是从朱诺到旧金山没有
映射关系
多对多关系
无向图
边没有方向的图
定义
无向图G=<V,E>,其中:
- V是非空集合,称为顶点集
- E是V中元素构成的无序二元组的集合,称为边集
图形
有向图
一个有向图D是指一个有序三元组(V(D),A(D),ψD),其中ψD)为关联函数,它使A(D)中的每一个元素(称为有向边或弧)对应于V(D)中的一个有序元素(称为顶点或点)对
定义
图形
注:有向图顶点分为 入度(箭头朝自己) 和 出度(箭头朝外)
简单图
在图中,若不存在顶点到其自身的边,且同一条边不重复出现,则称这样的图为简单图
定义
不包含平行边也不包含自环的图
平行边
在无向图中,关联一对顶点的无向边如果多于1条,则称这些边为平行边
在有向图中,关联一对顶点的有向边如果多于1条,并且这些边的始点与终点相同(也就是它们的的方向相同),称这些边为平行边
图形
完全无向图
定义
在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图
图形
有向完全图
定义
在有向图中,如果任意两个顶点之间都存在 方向互为相反 的两条弧,则称该图为 有向完全图