Multi-view Integration Learning for Irregularly-sampled Clinical Time Series
介绍
问题
电子健康记录(EHR)数据==稀疏且不规则==,因为它以不规则的时间间隔记录,并且在每个观察点测量不同的临床变量。不同数量的观察值和跨数据的时间对齐方式的缺乏使假定具有固定维特征空间的机器学习模型的使用无效。
研究进展
研究背景:基于RNN的方法已成为处理临床时间序列数据的实际解决方案,因为RNN可以管理各种长度的顺序数据。但是传统的RNN方法被设计为以连续时间序列之间的恒定时间间隔处理数据,从而导致针对不规则时间间隔的次优性能。为了应对这一挑战,广泛使用的方法是将不定期采样的时间序列数据转换为定期采样的时间序列,即时间离散,并将此固定维向量馈入RNN。但是,它需要对窗口大小和聚合函数进行临时选择,以处理属于同一窗口内的值。类似于离散化方法,插值方法要求指定离散的参考时间点。代替使用输入中所有可用的观测值来替换这些时间点的内插值,由于假定固定的时间间隔,它可能不可避免地引入额外的噪声或信息损失。处理不规则时间序列的更好方法是直接对不等间隔的原始数据进行建模。与依赖于离散时间的常规RNN相比,基于普通微分方程(ODE)的递归模型以处理非均匀时间间隔,并消除了通过归纳将观测值聚合为等距间隔的需求ODE将RNN