【归档】Is {(a, b, c) in F^3 : a^3 = b^3} a subspace of F^3? (the F is R and C)

Note: 旧的wordpress博客弃用,于是将以前的笔记搬运回来。


There are two question to be solved:

  1. Is { ( a , b , c ) ∈ R 3 : a 3 = b 3 (a, b, c) \in \mathbb{R}^3 : a^3 = b^3 (a,b,c)R3:a3=b3} a subspace of R 3 \mathbb{R}^3 R3?
  2. Is { ( a , b , c ) ∈ C 3 : a 3 = b 3 (a, b, c) \in \mathbb{C}^3 : a^3 = b^3 (a,b,c)C3:a3=b3} a subspace of C 3 \mathbb{C}^3 C3?
    Solution to question 1:
    Let V V V = { ( a , b , c ) ∈ R 3 : a 3 = b 3 (a, b, c) \in \mathbb{R}^3 : a^3 = b^3 (a,b,c)R3:a3=b3}.
    Part 1, additive identity:
    Obviously 0 = ( 0 , 0 , 0 ) ∈ V 0 = (0, 0, 0) \in V 0=(0,0,0)V.
    Part 2, closed under addition:
    Take u , w ∈ V , u = ( u 1 , u 2 , u 3 ) u, w \in V, u = (u_1, u_2, u_3) u,wV,u=(u1,u2,u3) and w = ( w 1 , w 2 , w 3 ) w = (w_1, w_2, w_3) w=(w1,w2,w3).
    We have u 1 3 = u 2 3 , w 1 3 = w 2 3 u_1^3 = u_2^3, w_1^3 = w_2^3 u13=u23,w13=w23.
    Thus u 1 = u 2 , w 1 = w 2 u_1 = u_2, w_1 = w_2 u1=u2,w1=w2 (1-2-1).
    Now we have u + w = ( u 1 + w 1 , u 2 + w 2 , u 3 + w 3 ) u + w = (u_1 + w_1, u_2 + w_2, u_3 + w_3) u+w=(u1+w1,u2+w2,u3+w3).
    According to formulas (1-2-1), we get u 1 + w 1 = u 2 + w 2 u_1 + w_1 = u_2 + w_2 u1+w1=u2+w2
    (i.e. ( u 1 + w 1 ) 3 = ( u 2 + w 2 ) 3 (u_1 + w_1)^3 = (u_2 + w_2)^3 (u1+w1)3=(u2+w2)3).
    Therefor u + w ∈ V u + w \in V u+wV.
    Part 3, closed under scalar multiplication:
    Take u ∈ V , u = ( u 1 , u 2 , u 3 ) , u \in V, u = (u_1, u_2, u_3), uV,u=(u1,u2,u3), and a ∈ R a \in \mathbb{R} aR.
    We have a u = a ( u 1 , u 2 , u 3 ) = ( a u 1 , a u 2 , a u 3 ) au = a(u_1, u_2, u_3) = (au_1, au_2, au_3) au=a(u1,u2,u3)=(au1,au2,au3).
    Clearly, ( a u 1 ) 3 = ( a u 2 ) 3 ↔ u 1 3 = u 2 3 (au_1)^3 = (au_2)^3 \leftrightarrow u_1^3 = u_2^3 (au1)3=(au2)3u13=u23.
    Therefor a u ∈ V au \in V auV.
    Therefor { ( a , b , c ) ∈ R 3 : a 3 = b 3 (a, b, c) \in \mathbb{R}^3 : a^3 = b^3 (a,b,c)R3:a3=b3} is a subspace of R 3 \mathbb{R}^3 R3.
    Solution to question 2:
    The key to the answer of this question is that for a , b ∈ C a, b \in \mathbb{C} a,bC, we can’t deduce a = b a = b a=b from a 3 = b 3 a^3 = b^3 a3=b3. Therefor, if we take
    u , w ∈ u, w \in u,w { ( a , b , c ) ∈ C 3 : a 3 = b 3 (a, b, c) \in \mathbb{C}^3 : a^3 = b^3 (a,b,c)C3:a3=b3},
    and assume u = ( u 1 , u 2 , u 3 ) , v = ( v 1 , v 2 , v 3 ) u = (u_1, u_2, u_3), v = (v_1, v_2, v_3) u=(u1,u2,u3),v=(v1,v2,v3), we can’t deduce ( u 1 + v 1 ) 3 = ( u 2 + v 2 ) 3 (u_1 + v_1)^3 = (u_2 + v_2)^3 (u1+v1)3=(u2+v2)3 from u 1 3 = u 2 3 a n d v 1 3 = v 2 3 u_1^3 = u_2^3 and v_1^3 = v_2^3 u13=u23andv13=v23.
    Thus { ( a , b , c ) ∈ C 3 : a 3 = b 3 (a, b, c) \in \mathbb{C}^3 : a^3 = b^3 (a,b,c)C3:a3=b3} isn’t closed under addition.
    i.e. { ( a , b , c ) ∈ C 3 : a 3 = b 3 (a, b, c) \in \mathbb{C}^3 : a^3 = b^3 (a,b,c)C3:a3=b3} is a subspace of C 3 \mathbb{C}^3 C3.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值