《机器学习》学习笔记(四)—梯度下降

Gradient Descent(梯度下降)

假设权值系数 θ \theta θ 包含两个变量 { θ 1 , θ 2 } \{\theta_1,\theta_2\} {θ1,θ2}
随机选取初始值
θ 0 = [ θ 1 0 θ 2 0 ] \theta^0=\begin{bmatrix}\theta_1^0\\\theta_2^0\end{bmatrix} θ0=[θ10θ20]

之后不断计算偏导进行迭代至收敛
在这里插入图片描述
这里微分 ∇ L = [ ∂ L ( θ 1 ) / ∂ θ 1 ∂ L ( θ 2 ) / ∂ θ 2 ] \nabla L=\begin{bmatrix}\partial L(\theta_1)/\partial \theta_1\\\partial L(\theta_2)/\partial \theta_2\end{bmatrix} L=[L(θ1)/θ1L(θ2)/θ2]
在这里插入图片描述

关于对学习速率 η \eta η 的调整

在实际运用中,尽管我们很大程度上希望可以通过 Gradient Descent 逐渐找到最优解,但是选取 η \eta η 并没有那么简答,在此,我们的函数需要满足 convex function,我们在这个前提下讨论如何调整学习速率 η \eta η
在这里插入图片描述
从上图我们容易看出, η \eta η 选取的过大过小都有影响, η \eta η 偏小导致学习速度慢, η \eta η 偏大则可能震荡导致无法收敛到最优解。我们需要的是一个合适对 η \eta η 的选择和调整的方法

最流行也是最简单的做法就是:在每一轮都通过一些因子来减小学习速率 η \eta η
最开始时,我们距离最低点很远,所以我们用较大的学习速率 η \eta η
经过几次迭代后,我们接近了最低点,所以我们减少学习速率 η \eta η
比如: 1/t 衰减: η t = η / t + 1 {\eta}^t=\eta/\sqrt{t+1} ηt=η/t+1
学习速率不能从一而终
要给不同的参数设置不同的学习速率 η \eta η

这里给出一个比较好的方法—梯度下降法 Adagrad
在这里插入图片描述
其中
η t = η t + 1 \eta ^t=\frac{\eta}{\sqrt{t+1}} ηt=t+1 η
g t = ∂ L ( θ t ) ∂ w g ^t=\frac{\partial L(\theta^t)}{\partial{w}} gt=wL(θt)
σ t = 1 t + 1 ∑ i = 0 t ( g i ) 2 \sigma ^t=\sqrt{\frac{1}{t+1}\sum\limits_{i=0}^t(g^i)^2} σt=t+11i=0t(gi)2

这样操作后,每组的学习速率 η \eta η 都不一样。
注意到 η t \eta ^t ηt g t g^t gt 中存在可以约分的因子
在这里插入图片描述
这样,越到后面,学习速率也会越慢。

那么,为什么在 Adagrad 中要引入 ∑ i = 0 t ( g i ) 2 \sqrt{\sum\limits_{i=0}^t(g^i)^2} i=0t(gi)2 这个分母呢
在这里插入图片描述
直观的解释是:Adagrad 强调的是方差的效果
在这里插入图片描述
当我们仔细分析一下其中的原因,举一个一元二次函数的例子在这里插入图片描述
之后,我们又可以发现最优步长的分母其实是函数的二阶微分, ∂ 2 y ∂ x 2 = 2 a \frac{\partial^2y}{\partial x^2}=2a x22y=2a,所以最优的步长选择应该是 ∣ F i r s t   d e r i v a t i v e ∣ ∣ S e c o n d   d e r i v a t i v e ∣ \frac{|First\ derivative|}{|Second\ derivative|} Second derivativeFirst derivative

同样对于多个参数的情况,我们也要考虑二阶微分,最优的步长选择是 ∣ F i r s t   d e r i v a t i v e ∣ ∣ S e c o n d   d e r i v a t i v e ∣ \frac{|First\ derivative|}{|Second\ derivative|} Second derivativeFirst derivative
在这里插入图片描述
那么在 Adagrade 中可以类比使用 ∣ F i r s t   d e r i v a t i v e ∣ ∣ S e c o n d   d e r i v a t i v e ∣ \frac{|First\ derivative|}{|Second\ derivative|} Second derivativeFirst derivative 这种形式,但是 Adagrade 中并没有使用这种一阶微分比上二阶微分,因为这样会加大计算量,导致运行速率降低,所以,我们使用一阶微分来估计二阶微分的数值并代替使用。
在这里插入图片描述

随机梯度下降算法(SGD)

Stochastic Gradient Descent

SGD中,每次更新参数只使用一个样本,这样就可以快速的完成训练过程。

在这里插入图片描述
很显然,随机梯度下降算法的运算量小,效率也就越高
在这里插入图片描述

Feature Scaling(特征缩放)

让不同的特征值具有相同的缩放程度。

比如说,一个函数模型中有两个特征,但是它们分布范围不一样。那我们可以进行一定的缩放,让它们的范围大小相近。让这些特征值具有相同的缩放程度。
  y = b + w 1 x 1 + w 2 x 2 \ y=b+w_1x_1+w_2x_2  y=b+w1x1+w2x2
在这里插入图片描述
比分说上面的这个函数模型,特征值的范围大小会对他们的损失函数 L L L 造成一定的影响。
在这里插入图片描述
那么怎么实现 Feature Scaling(特征缩放)
方法非常多,一种常见的做法如下:
在这里插入图片描述
每一个对象都有一组特征值,对于每一个维度的特征值(绿色框)计算其平均数,记作 m i m_i mi ,计算标准差,记作 σ i \sigma_i σi
然后用第 r r r 个对象中的第 i i i 个输入,减掉平均数 m i m_i mi ,除以标准差 σ i \sigma_i σi。得到的结果是所有的维数都是 0,所有的方差都是 1。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值