机器学习系列(六)——梯度下降解释及其技巧

在训练机器学习模型寻找最优函数时,梯度下降(Gradient Descent)是最常用的优化(optimization)方法。在给定一组初始参数 θ 0 \theta^0 θ0时,梯度下降算法能够顺着损失函数下降最快的方向逐步逼近最低点,也就是最佳参数 θ ∗ \theta^* θ的位置。 那梯度下降算法为什么work呢?为什么梯度的反方向就是损失函数下降最快的方向呢?

梯度下降算法解释

首先回顾一下梯度下降算法是如何工作的,我们的目标是找到 θ ∗ \theta^* θ
θ ∗ = a r g min ⁡ θ L ( θ ) \theta^*=arg\min_\theta L(\theta) θ=argθminL(θ)

其中 L L L是损失函数,梯度下降算法步骤如下:

  1. 随机选取一组初始参数 θ 0 \theta^0 θ0
  2. 计算损失函数在该点的偏导数 ∇ L ( θ n − 1 ) \nabla L(\theta^{n-1}) L(θn1),也就是梯度。
  3. 更新参数 θ n = θ n − 1 − η ∇ L ( θ n − 1 ) \theta^n=\theta^{n-1}-\eta\nabla L(\theta^{n-1}) θn=θn1ηL(θn1)
  4. 重复2,3步骤,直至梯度不再下降(小于某个阈值范围)。

上面第3步中可以看到,每次我们顺着梯度的反方向更新 θ \theta θ,其中 η \eta η是学习速率,代表了每次更新的步伐大小。在只含有两个未知参数时,梯度下降的直观过程如下图:
在这里插入图片描述

下面根据李宏毅课程的思路对梯度下降的原理进行解释。同样假设只包含两个参数 θ 1 \theta^1 θ1 θ 2 \theta^2 θ2。随机给定一个初始点,在“目之所及”的范围内寻找损失函数下降最快的方向,如下图
在这里插入图片描述

θ 0 \theta^0 θ0是随机给定的初始点,红色圆圈是“目之所及”的范围,现在的关键是如何找到圆圈范围内下降最快的方向,由泰勒展示(Taylor Series):当函数 h ( x ) h(x) h(x) x = x 0 x=x_0 x=x0处是可微的,那么 h ( x ) h(x) h(x)可以写成
h ( x ) = ∑ k = 0 ∞ h ( k ) ( x 0 ) k ! ( x − x 0 ) k = h ( x 0 ) + h ′ ( x 0 ) ( x − x 0 ) + h ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ \begin{aligned} h(x) =& \sum_{k=0}^\infty\frac{h^{(k)}(x_0)}{k!}(x-x_0)^k\\ =& h(x_0)+h^{'}(x_0)(x-x_0)+\frac{h^{''}(x_0)}{2!}(x-x_0)^2+\cdots \end{aligned} h(x)==k=0k!h(k)(x0)(xx0)kh(x0)+h(x0)(xx0)+2!h(x0)(xx0)2+

x x x非常接近 x 0 x_0 x0时,上式中的平方项等更高次项的值将无限接近于0,此时 h ( x ) h(x) h(x)可以约等于
h ( x ) ≈ h ( x 0 ) + h ′ ( x 0 ) ( x − x 0 ) h(x)\approx h(x_0)+h^{'}(x_0)(x-x_0) h(x)h(x0)+h(x0)(xx0)

多变量泰勒展示同样成立,只需对各个变量分别求偏导数
h ( x , y ) ≈ h ( x 0 , y 0 ) + ∂ h ( x 0 , y 0 ) ∂ x ( x − x 0 ) + ∂ h ( x 0 , y 0 ) ∂ y ( y − y 0 ) h(x,y)\approx h(x_0,y_0)+\frac{\partial h(x_0,y_0)}{\partial x}(x-x_0)+\frac{\partial h(x_0,y_0)}{\partial y}(y-y_0) h(x,y)h(x0,y0)+xh(x0,y0)(xx0)+yh(x0,y0)(yy0)

因此,在任意点 ( a , b ) (a,b) (a,b)处我们可以将损失函数用泰勒展示展开,并且当红色圆圈足够小时,圆圈内的函数值可以近似为
L ( θ ) ≈ L ( a , b ) + ∂ L ( a , b ) ∂ θ 1 ( θ 1 − a ) + ∂ L ( a , b ) ∂ θ 2 ( θ 2 − b ) L(\theta)\approx L(a,b)+\frac{\partial L(a,b)}{\partial\theta_1}(\theta_1-a)+\frac{\partial L(a,b)}{\partial\theta_2}(\theta_2-b) L(θ)L(a,b)+θ1L(a,b)(θ1a)+θ2L(a,b)(θ2b)

其中, L ( a , b ) L(a,b) L(a,b) ∂ L ( a , b ) ∂ θ 1 \frac{\partial L(a,b)}{\partial\theta_1} θ1L(a,b) ∂ L ( a , b ) ∂ θ 2 \frac{\partial L(a,b)}{\partial\theta_2} θ2L(a,b)都是常数,分别令其等于 s s s u u u v v v,所以
L ( θ ) ≈ s + u ( θ 1 − a ) + v ( θ 2 − b ) L(\theta)\approx s+u(\theta_1-a)+v(\theta_2-b) L(θ)s+u(θ1a)+v(θ2b)

我们需要在圆圈内找出一组 θ 1 \theta_1 θ1, θ 2 \theta_2 θ2使得 L ( θ ) L(\theta) L(θ)最小,形式化表达如下:
min ⁡ θ L ( θ ) ≈ s + u ( θ 1 − a ) + v ( θ 2 − b ) s . t . ( θ 1 − a ) 2 + ( θ 2 − b ) 2 ≤ d 2 \min_\theta\quad L(\theta)\approx s+u(\theta_1-a)+v(\theta_2-b)\\ s.t.\quad(\theta_1-a)^2+(\theta_2-b)^2\le d^2 θminL(θ)s+u(θ1a)+v(θ2b)s.t.(θ1a)2+(θ2b)2d2

优化目标和约束中都有 ( θ 1 − a ) (\theta_1-a) (θ1a) ( θ 2 − b ) (\theta_2-b) (θ2b),分别用 Δ θ 1 \Delta\theta_1 Δθ1 Δ θ 2 \Delta\theta_2 Δθ2代替
min ⁡ θ L ( θ ) ≈ s + u Δ θ 1 + v Δ θ 2 s . t . Δ θ 1 2 + Δ θ 2 2 ≤ d 2 \min_\theta\quad L(\theta)\approx s+u\Delta\theta_1+v\Delta\theta_2\\ s.t.\quad{\Delta\theta_1}^2+{\Delta\theta_2}^2\le d^2 θminL(θ)s+uΔθ1+vΔθ2s.t.Δθ12+Δθ22d2

观察 u Δ θ 1 + v Δ θ 2 u\Delta\theta_1+v\Delta\theta_2 uΔθ1+vΔθ2的形式,可以看作是两个向量 ( u , v ) (u,v) (u,v), ( θ 1 , θ 2 ) (\theta_1,\theta_2) (θ1,θ2)的内积,要使向量内积最小,只需 ( θ 1 , θ 2 ) (\theta_1,\theta_2) (θ1,θ2)的方向正好与 ( u , v ) (u,v) (u,v)的方向相反,同时 ( θ 1 , θ 2 ) (\theta_1,\theta_2) (θ1,θ2)的长度达到圆的半径,所以
[ Δ θ 1 Δ θ 2 ] = − η [ u v ] ⟹ [ θ 1 θ 2 ] = [ a b ] − η [ ∂ L ( a , b ) ∂ θ 1 ∂ L ( a , b ) ∂ θ 2 ] \begin{aligned} \begin{bmatrix} \Delta\theta_1 \\ \Delta\theta_2 \end{bmatrix}=-\eta \begin{bmatrix} u \\ v \end{bmatrix} \Longrightarrow \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}= \begin{bmatrix} a \\ b \end{bmatrix}-\eta \begin{bmatrix} \frac{\partial L(a,b)}{\partial\theta_1} \\ \frac{\partial L(a,b)}{\partial\theta_2} \end{bmatrix} \end{aligned} [Δθ1Δθ2]=η[uv][θ1θ2]=[ab]η[θ1L(a,b)θ2L(a,b)]

经过上面的推导,我们很好的解释了为什么要沿着梯度的反方向更新参数,并且也解释了学习速率 η \eta η不能设置过大,否则 L ( θ ) ≈ s + u Δ θ 1 + v Δ θ 2 L(\theta)\approx s+u\Delta\theta_1+v\Delta\theta_2 L(θ)s+uΔθ1+vΔθ2将不再成立。

梯度下降的一些技巧

1、学习速率(learning rate)

学习速率是最需要调整的一个超参数,太小会使得训练速度过慢;太大会使得训练无法收敛,因此需要很小心的调节学习速率 η \eta η
在这里插入图片描述

我们可以绘出损失函数的曲线图,如上图左边所示,红色的学习速率最合适,蓝色的太小,绿色的偏大,黄色则非常大。但是当参数数目很多时将无法可视化损失函数曲线,这时我们可以绘制出随迭代次数增加损失值变化曲线,如上图右边所示。如果损失下降很慢(蓝色),可能学习速率过低;如果损失开始下降很快,但很快稳定在一个较大的值(绿色),可能学习速率偏大了;如果损失不降返升(黄色),学习速率可能过大了;只有损失以恰当的速度降到很小(红色),才是最佳学习速率。

2、Adagrad

大家都有一个直观的想法:在初始距离最低点很远时,给予较大的学习速率,使得损失迅速下降;快要接近最低点时,给与较小的学习速率,确保能够到达最低点。也就是说,随着迭代次数的增加,学习速率逐渐减小
η t = η t + 1 \eta^t=\frac{\eta}{\sqrt{ t+1}} ηt=t+1 η

每次迭代时,对所有参数都给予同样大小的参数,可能仍然不够精细,最好是学习速率能够因参数而异,Adagrad是最常用的方法,每个参数的学习速率都除上该参数之前所有微分的均方根。
w t + 1 ← w t − η t σ t g t w^{t+1}\gets w^t-\frac{\eta^t}{\sigma^t}g^t wt+1wtσtηtgt

g t = ∂ L ( θ t ) ∂ w g^t=\dfrac{\partial L(\theta^t)}{\partial w} gt=wL(θt) θ t \theta^t θt处的梯度值, σ t \sigma^t σt是之前所有微分的均方根。例如:
σ 0 = ( g 0 ) 2 σ 1 = 1 2 [ ( g 0 ) 2 + ( g 1 ) 2 ] σ 2 = 1 3 [ ( g 0 ) 2 + ( g 1 ) 2 + ( g 2 ) 2 ] ⋮ σ t = 1 t + 1 ∑ i = 0 t ( g i ) 2 \begin{aligned} \sigma^0&=\sqrt{(g^0)^2}\\ \sigma^1&=\sqrt{\frac{1}{2}[(g^0)^2+(g^1)^2]}\\ \sigma^2&=\sqrt{\frac{1}{3}[(g^0)^2+(g^1)^2+(g^2)^2]}\\ \vdots\\ \sigma^t&=\sqrt{\frac{1}{t+1}\sum_{i=0}^t(g^i)^2}\\ \end{aligned} σ0σ1σ2σt=(g0)2 =21[(g0)2+(g1)2] =31[(g0)2+(g1)2+(g2)2] =t+11i=0t(gi)2

同时, η t = η t + 1 \eta^t=\dfrac{\eta}{\sqrt{t+1}} ηt=t+1 η,上式可以化简为
w t + 1 ← w t − η ∑ i = 0 t ( g i ) 2 g t w^{t+1}\gets w^t-\frac{\eta}{\sqrt{\sum_{i=0}^t(g^i)^2}}g^t wt+1wti=0t(gi)2 ηgt

下面尝试对Adagrad做一个解释,首先需要考虑的是:梯度越大,距离最低点越远,步伐越大?还是以两参数为例:
在这里插入图片描述

如果分别考虑每一维变量,确实是梯度越大,距离最低点越远,但是对比 a a a点和 c c c点, c c c点的梯度大于 a a a点的梯度,但是 c c c点距离最低点更近,这说明梯度越大,距离最低点越远并不总是成立。所以在更新参数时,并不是梯度越大,步伐就可以调的越大。
考虑二次函数 y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c,点 x 0 x_0 x0距最低点的距离是 ∣ x 0 + b 2 a ∣ |x_0+\dfrac{b}{2a}| x0+2ab,也就是 ∣ 2 a x 0 + b ∣ 2 a \dfrac{|2ax_0+b|}{2a} 2a2ax0+b,所以最佳步伐应该是 ∣ 2 a x 0 + b ∣ 2 a \dfrac{|2ax_0+b|}{2a} 2a2ax0+b,分子是一阶微分的绝对值,与梯度对应,分母是二阶微分,这表明在选择最佳步伐时,我们还要考虑二阶微分。

The best step is 一 阶 微 分 二 阶 微 分 \frac{一阶微分}{二阶微分}

但是计算二阶微分意味着增加一倍的计算量,这在参数很多时是不划算的,因此Adagrad采用所有一阶微分的均方根作为等价替代。

3、随机梯度下降(Stochastic Gradient Descent)or 小批量梯度下降(Mini-Batch Gradient Descent)

常规的梯度下降也就是批量梯度下降,是在整个数据集上求偏导,在该方法中,每次更新我们需要计算整个数据集中每个样本点的误差,因此速度会比较慢,对于很大的数据集,内存可能无法容纳以至无法使用,因此在实际中一般使用随机梯度下降(Stochastic Gradient Descent)或者小批量梯度下降(Mini-Batch Gradient Descent)。随机梯度下降(Stochastic Gradient Descent)的每次更新,是对数据集中的每个样本点计算损失函数,这样对于m个样本的数据集,批量梯度下降更新一次,SGD可以更新m次,虽然每次只考虑一个样本点,可能存在较大的波动,但最终都会收敛。小批量梯度下降(Mini-Batch Gradient Descent)是批量梯度下降和随机梯度下降的折中,每次更新,对数据集中部分数据计算损失函数。

4、特征缩放(Feature Scaling)

特征缩放是指将每个特征的取值限定在相同的范围
在这里插入图片描述

为什么要将每个特征的取值限定在相同范围呢?看下面的例子:
在这里插入图片描述

图中左边 x 1 x_1 x1的取值范围是 x 2 x_2 x2的百分之一,当 w 2 w_2 w2稍有变化, y y y值将变化很大,因此损失函数也将变化很大,也就是说损失函数在 w 2 w_2 w2方向下降很快,导致损失函数等高线呈扁平的椭圆形,这种情况下不用Adagrad将比较难处理,两个方向上需要不同的学习率。但经过特征缩放后,所有特征的取值范围都是统一的,损失函数等高线呈规整的圆形,梯度下降效率将比较高。

参考文献

李宏毅主页

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值