基于逻辑回归预测 NBA 新秀的职业生涯

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

预测 NBA 新秀的职业生涯寿命

该项目是使用 Scikit-learn 的二元分类模型来预测 NBA 新秀在提供一些信息(例如出场次数、助攻、抢断和失误等)的情况下是否会在联盟中持续服役 5 年。


数据集来源:数据世界

我们将重点关注:

  • 1)利用热图相关性进行特征选择
  • 2)逻辑回归

Part 1: 导入科学计算库并加载数据集

导入科学计算库

import pandas as pd # load and manipulate data 
import numpy as np # calculate the mean and standard deviation
import matplotlib.pyplot as plt # drawing graphs
from sklearn.model_selection import train_test_split # split  data into training and testing sets
from sklearn.linear_model import LogisticRegression # import Logistic regression from sklearn

import sklearn.metrics as metrics # import metrics 
import seaborn as sns # import seaborn for visualization 
from sklearn.preprocessing import MinMaxScaler #import min max scaler

from sklearn.metrics import confusion_matrix#confusion matrix
from yellowbrick.classifier import ROCAUC#Discriminationthreshold
import numpy as np
import pandas as pd 

import matplotlib.pyplot as plt
import seaborn as sns

加载数据集

nba = pd.read_csv('./data/nba_logreg.csv')
nba.head()

 数据集中特征的描述如下所示

                        

Part 2: 数据探索 

# check class imbalance
nba['TARGET_5Yrs'].value_counts()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值