超市商场客户细分项目

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

项目背景

在竞争激烈的商业环境中,了解和满足客户的需求是任何成功商场的关键要素。为了更好地理解我们的客户并制定有针对性的营销策略,我们拥有一家超市商场,并通过会员卡收集了客户的基本数据。其中,我们尤其关注了一项叫做”消费分数”的指标,这是根据我们定义的一些参数,如客户行为和购买数据,为每位客户分配的分数。

项目目标

本项目的主要目标包括:

  1. 通过K均值聚类算法对客户进行细分,以识别不同的客户群体。
  2. 确定目标客户,即哪些客户更容易受到吸引。
  3. 提供有关不同客户群体的详细信息,以便为市场团队制定有针对性的营销策略。

通过这个项目,我们希望能够更好地了解我们的客户,从而为我们的商场提供更智能、个性化和有效的市场战略。我们将通过数据分析和机器学习算法的应用来实现这一目标,并将在未来分享我们的研究结果和见解。

数据集描述

我们的数据集包含了以下关键属性:

  • 客户ID
  • 年龄
  • 性别
  • 年收入
  • 消费分数

我们可以通过对这些属性进行分析和建模,深入了解客户群体的特征,以及哪些客户更容易被吸引和满足。

模型选择与依赖库

算法: 我们的关键算法是K均值聚类(Kmeans Clustering),它可以将客户分成不同的群体,每个群体具有相似的特征。这将有助于我们理解不同群体的需求和购买行为,从而更好地满足他们的期望。

Libraries(依赖库): 为了完成这个项目,我们将利用以下Python库和机器学习算法:

  • Pandas:用于数据加载和处理,帮助我们清洗和准备数据。
  • Matplotlib和Seaborn:用于数据可视化,以便更好地理解客户数据的分布和关联关系。
  • Scikit-learn:这是一个强大的机器学习库,我们将使用其中的K均值聚类算法来对客户进行细分。

代码实现

导入模块

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt 

加载数据集

df = pd.read_csv('Mall_Customers.csv')
df.head()
CustomerIDGenderAgeAnnual Income (k$)Spending Score (1-100)
01Male191539
12Male211581
23Female20166
34Female231677
45Female311740
# 统计信息
df.describe()
CustomerIDAgeAnnual Income (k$)Spending Score (1-100)
count200.000000200.000000200.000000200.000000
mean100.50000038.85000060.56000050.200000
std57.87918513.96900726.26472125.823522
min1.00000018.00000015.0000001.000000
25%50.75000028.75000041.50000034.750000
50%100.50000036.00000061.50000050.000000
75%150.25000049.00000078.00000073.000000
max200.00000070.000000137.00000099.000000
# 数据类型信息
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
 #   Column                  Non-Null Count  Dtype 
---  ------                  --------------  ----- 
 0   CustomerID              200 non-null    int64 
 1   Gender                  200 non-null    object
 2   Age                     200 non-null    int64 
 3   Annual Income (k$)      200 non-null    int64 
 4   Spending Score (1-100)  200 non-null    int64 
dtypes: int64(4), object(1)
memory usage: 7.9+ KB

探索性数据分析

gender_counts = df['Gender'].value_counts()
sns.barplot(x=gender_counts.index, y=gender_counts.values)
plt.xlabel('Gender')
plt.ylabel('Count')
plt.title('Gender Distribution')
plt.show()

sns.displot(df['Age'], kde=True)  # kde=True添加核密度估计曲线
plt.xlabel('Age')
plt.ylabel('Density')
plt.title('Age Distribution')
plt.show()


sns.displot(df['Annual Income (k$)'], kde=True)  # kde=True添加核密度估计曲线
plt.xlabel('Annual Income (k$)')
plt.ylabel('Density')
plt.title('Annual Income (k$) Distribution')
plt.show()

sns.displot(df['Spending Score (1-100)'], kde=True)  # kde=True添加核密度估计曲线
plt.xlabel('Spending Score (1-100)')
plt.ylabel('Density')
plt.title('Spending Score (1-100) Distribution')
plt.show()

相关矩阵

corr = df.corr(numeric_only=True)
sns.heatmap(corr, annot=True, cmap='coolwarm')
<Axes: >

聚类

df.head()
CustomerIDGenderAgeAnnual Income (k$)Spending Score (1-100)
01Male191539
12Male211581
23Female20166
34Female231677
45Female311740
# 基于 2 个特征的聚类
df1 = df[['Annual Income (k$)', 'Spending Score (1-100)']]
df1.head()
Annual Income (k$)Spending Score (1-100)
01539
11581
2166
31677
41740
# 散点图
sns.scatterplot(x='Annual Income (k$)', y='Spending Score (1-100)', data=df1)
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.title('Scatter Plot of Annual Income vs. Spending Score')
plt.show()

import warnings 
warnings.filterwarnings("ignore", category=UserWarning) 
from sklearn.cluster import KMeans

errors = []
for i in range(1, 11): 
    kmeans = KMeans(n_clusters=i, random_state=0,n_init=10, max_iter=300 )
    kmeans.fit(df1)
    errors.append(kmeans.inertia_) 
# 绘制肘部法的结果
plt.figure(figsize=(13,6))
plt.plot(range(1,11), errors)
plt.plot(range(1,11), errors, linewidth=3, color='red', marker='8')
plt.xlabel('No. of clusters')
plt.ylabel('WCSS')
plt.xticks(np.arange(1,11,1))
plt.show()

km = KMeans(n_clusters=5, n_init=10)
km.fit(df1)

y = km.predict(df1)
df1.loc[:, 'Label'] = y

df1.head()
C:\Users\1\AppData\Local\Temp\ipykernel_21088\2186447201.py:5: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  df1.loc[:, 'Label'] = y

Annual Income (k$)Spending Score (1-100)Label
015390
115813
21660
316773
417400
sns.scatterplot(x='Annual Income (k$)', y='Spending Score (1-100)', data=df1, hue='Label', s=50, palette=['red', 'green', 'brown', 'blue', 'orange'])
<Axes: xlabel='Annual Income (k$)', ylabel='Spending Score (1-100)'>

# 基于 3 个特征的聚类
df2 = df[['Annual Income (k$)', 'Spending Score (1-100)', 'Age']]
df2.head()
Annual Income (k$)Spending Score (1-100)Age
0153919
1158121
216620
3167723
4174031
import warnings 
warnings.filterwarnings("ignore", category=UserWarning) 
from sklearn.cluster import KMeans

errors = []
for i in range(1, 11): 
    kmeans = KMeans(n_clusters=i, random_state=0,n_init=10, max_iter=300 )
    kmeans.fit(df2)
    errors.append(kmeans.inertia_) 
# 绘制肘部法的结果
plt.figure(figsize=(13,6))
plt.plot(range(1,11), errors)
plt.plot(range(1,11), errors, linewidth=3, color='red', marker='8')
plt.xlabel('No. of clusters')
plt.ylabel('WCSS')
plt.xticks(np.arange(1,11,1))
plt.show()

km = KMeans(n_clusters=5, n_init=10)
km.fit(df2)

y = km.predict(df2)
df2.loc[:, 'Label'] = y

df2.head()
C:\Users\1\AppData\Local\Temp\ipykernel_21088\4218386864.py:5: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  df2.loc[:, 'Label'] = y

Annual Income (k$)Spending Score (1-100)AgeLabel
01539194
11581210
2166204
31677230
41740314
# 3d 散点图
fig = plt.figure(figsize=(20,15))
ax = fig.add_subplot(111, projection='3d')

ax.scatter(df2['Age'][df2['Label']==0], df2['Annual Income (k$)'][df2['Label']==0], df2['Spending Score (1-100)'][df2['Label']==0], c='red', s=50)
ax.scatter(df2['Age'][df2['Label']==1], df2['Annual Income (k$)'][df2['Label']==1], df2['Spending Score (1-100)'][df2['Label']==1], c='green', s=50)
ax.scatter(df2['Age'][df2['Label']==2], df2['Annual Income (k$)'][df2['Label']==2], df2['Spending Score (1-100)'][df2['Label']==2], c='blue', s=50)
ax.scatter(df2['Age'][df2['Label']==3], df2['Annual Income (k$)'][df2['Label']==3], df2['Spending Score (1-100)'][df2['Label']==3], c='brown', s=50)
ax.scatter(df2['Age'][df2['Label']==4], df2['Annual Income (k$)'][df2['Label']==4], df2['Spending Score (1-100)'][df2['Label']==4], c='orange', s=50)
ax.view_init(30, 190)
ax.set_xlabel('Age')
ax.set_ylabel('Annual Income')
ax.set_zlabel('Spending Score')
plt.show()

代码与数据集下载

详情请见超市商场客户细分项目-VenusAI (aideeplearning.cn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值