百度灵境矩阵搭建自己的第一个智能体

本文详细介绍了如何通过百度灵境矩阵网站,利用低代码方式创建智能体,包括登录、配置、利用文心一言生成头像、名称、开场白、指令和引导示例的步骤,以及发布后需审核的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、 访问灵境矩阵网站

百度灵境矩阵:https://agents.baidu.com/center
在这里插入图片描述

2、 点击左下角,立即登录体验,可选择账号登录与短信登录两种方式登录

在这里插入图片描述

3、 登录成功到下面的页面

在这里插入图片描述

4、 点击左上方的创建智能体选项,进入下面的页面

在这里插入图片描述

5、 可以选择零代码、低代码、全代码三种方式创建自己的智能体(我这里选择了低代码方式创建智能体),选择之后进入下面的页面

在这里插入图片描述

6、 选择左边上面的配置选项,可以看到以下页面

在这里插入图片描述

7、 接下来开始一步一步创建自己的智能体

创建时我们可以使用百度的文心一言大模型为我们服务,借助文心一言快速搭建自己的第一个智能体

文心一言:https://yiyan.baidu.com/

8、 第一步生成头像、点击头像框的右下角的魔法棒,自动生成一个头像

在这里插入图片描述
在这里插入图片描述

9、 第二步起一个名字,没思路可以用文心一言生成

文心一言:https://yiyan.baidu.com/
想创建个智能体,帮我想个名称,关于:**(**是职业,例如英语老师)
参考优秀示例:最好直接说明智能体用途~如:小红书文案创作、B站视频脚本创作、解梦大师、国画大师等

• 智能体名称应为二十个字以内,要高度概括智能体功能
o ✅优秀示例:最好直接说明智能体用途~如:小红书文案创作、B站视频脚本创作、解梦大师、国画大师等
在这里插入图片描述

生成之后选择一个,填入我们的想要创建的智能体名称中

在这里插入图片描述

10、利用文心一言生成开场白信息

文心一言:https://yiyan.baidu.com/
想创建个智能体,帮我想个开场白,关于:**(**上面选的名称)
参考优秀示例:以简短的文字生动地介绍智能体功能和使用场景。如:“小红书文案创作”智能体开场白:你好,我能够轻松创作小红书文案,助力玩转小红书社区~
在这里插入图片描述

选择一句,填入我们的开场白配置中
在这里插入图片描述

11、利用文心一言生成指令信息

文心一言:https://yiyan.baidu.com/
想创建个智能体,帮我想指令,关于:**(**上面选的名称)
参考优秀示例:
角色与目标:你是一个健身教练,会针对用户的问题,结合训练科学、生物力学、生理学和营养学等专业知识,给用户锻炼指导和营养信息。
指导原则:你需要确保给出的建议科学、合理且安全,不会对用户的健康造成不良影响。
限制:在提供建议时,需要强调在医疗或个性化建议方面用户仍然需要线下寻求专业咨询。
澄清:在与用户交互的过程中,你需要明确回答用户关于健身和营养学方面的问题,对于非健身相关的问题,你的回应是“我只是一个健身教练,不能回答这个问题噢”,并询问用户是否有健康、健身相关的问题。
个性化:在回答时,你需要以专业、可靠的语气回答,偶尔也可以带些风趣和幽默,调节氛围。
在这里插入图片描述

将生成的指令,写入指令配置中
在这里插入图片描述

12、利用文心一言生成引导示例信息

文心一言:https://yiyan.baidu.com/
想创建个智能体,帮我想引导示例,关于:**(**上面选的名称)
参考优秀示例:
优秀示例:根据用户可能会使用的场景进行设置,快速抓住用户。如:“小红书文案创作”智能体引导示例:a. 口红色号安利 b. 数码产品介绍 c. 智能家居推荐

在这里插入图片描述

选择一个,写入我们需要的配置引导示例中
在这里插入图片描述

13、数据集部分(暂时不用选,也可看自己情况查找之后配置)

14、点击右上角发布按钮,就可以发布了,至此,你的第一个智能体就搭建完成了

在这里插入图片描述

15、发布之后需要审核之后才能通过

在这里插入图片描述

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DKPT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值