遥感图像目标检测常用数据集及下载链接汇总

本文介绍了多个用于遥感图像目标检测的数据集,包括TAS(专注于汽车检测)、DIOR(大规模光学遥感基准)、LEVIR(高分辨率场景)、DOTA、RSOD、UCAS-AOD、NWPUVHR-10、VEDAI和HRSC2016,涵盖了飞机、车辆、油罐等多种目标。这些数据集为遥感图像分析提供了丰富的训练资源和挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、TAS数据集
2、DIOR
3、LEVIR
4、DOTA
5、RSOD
6、UCAS-AOD
7、NWPU VHR-10
8、VEDAI
9、HRSC2016

在这里插入图片描述
1、TAS数据集

是为航空图像中的汽车检测而设计的。包含30张图片和1319辆手动标注的汽车。这些图像的空间分辨率相对较低,由建筑物和树木造成的阴影较多。
Heitz G, Koller D. Learning spatial context: Using stuff to find things[C]//European conference on computer vision. Springer, Berlin, Heidelberg, 2008: 30-43.

网页介绍链接http://ai.stanford.edu/~gaheitz/Research/TAS/
链接: https://pan.baidu.com/s/1fTl2ocIluJ8E9vMvCMP-lA 提取码: 2kca

2、DIOR
在这里插入图片描述用于光学遥感图像目标检测的大规模基准数据集。含23463张图片和190288实例,覆盖20种目标,比DOTA数据集更大!这20个对象类是飞机、机场、棒球场、篮球场、桥梁、烟囱、水坝、高速公路服务区、高速公路收费站、港口、高尔夫球场、地面田径场、天桥、船舶、体育场、储罐、网球场、火车站、车辆和风磨。

Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
下载地址:http://www.escience.cn/people/gongcheng/DIOR.html

3、LEVIR
在这里插入图片描述由大量 800 × 600 像素和0.2m〜1.0m /像素的高分辨率Google Earth图像和超过22k的图像组成。LEVIR数据集涵盖了人类居住环境的大多数类型地面特征,例如城市,乡村,山区和海洋。数据集中未考虑冰川,沙漠和戈壁等极端陆地环境。数据集中有3种目标类型:飞机,轮船(包括近海轮船和向海轮船)和油罐。所有图像总共标记了11k个独立边界框,包括4,724架飞机,3,025艘船和3,279个油罐。每个图像的平均目标数量为0.5。

Zou Z, Shi Z. Random access memories: A new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing, 2017, 27(3): 1100-1111.
数据下载地址:http://levir.buaa.edu.cn/Code.htm
链接: https://pan.baidu.com/s/1-eUAq2PszdHeE2VSG3q5cw 提取码: j9jp

4、DOTA
在这里插入图片描述

2806张遥感图像(大小约4000*4000),188,282个instances,分为15个类别:飞机、船只、储蓄罐、棒球场、网球场、篮球场、田径场、海港、桥、大型车辆、小型车辆、直升飞机、英式足球场、环形路线、游泳池。每个实例都由一个四边形边界框标注,顶点按顺时针顺序排列。
更新:DOTA-v1.5在16个类别中包含40万个带注释的对象实例,这是DOTA-v1.0的更新版本。 它们都使用相同的航拍图像,但是DOTA-v1.5修改并更新了对象的注释,其中在DOTA-v1.0中缺少了许多大约10个像素以下的小对象实例,并对其进行了附加注释。 DOTA-v1.5的类别也得到了扩展。 具体地,增加了集装箱起重机的类别。

Xia G S, Bai X, Ding J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 3974-3983.

数据下载网页地址:https://captain-whu.github.io/DOTA/dataset.html>
链接: https://pan.baidu.com/s/1o4Tsx7hgh2a2O73kxJRVLg 提取码: yvi1

5、RSOD
在这里插入图片描述一个开放的目标检测数据集,用于遥感图像中的目标检测。数据集包含飞机,油箱,运动场和立交桥,以PASCAL VOC数据集的格式进行标注。
数据集包括4个文件夹,每个文件夹包含一种对象:
1.飞机数据集,446幅图像中的4993架飞机
2.操场,189副图像中的191个操场。
3.立交桥,176副图像中的180座立交桥。
4.油箱,165副图像中的1586个 油箱。

Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-

6、UCAS-AOD
用于飞机和车辆检测。具体来说,飞机数据集包括600张图像和3210架飞机,而车辆数据集包括310张图像和2819辆车辆。所有的图像都经过精心挑选,使数据集中的物体方向分布均匀。

下载地址https://pan.baidu.com/s/1Poo0zEHTHDfBTnKPb5YTCg 提取码: 7zsi

7、NWPU VHR-10
在这里插入图片描述
10个地理空间对象类,包括飞机、棒球场、篮球场、桥梁、港口、地面田径场、船舶、储罐、网球场和车辆。它由715幅RGB图像和85幅锐化彩色红外图像组成。其中715幅RGB图像采集自谷歌地球,空间分辨率从0.5m到2m不等。85幅经过pan‐锐化的红外图像,空间分辨率为0.08m,来自Vaihingen数据。该数据集共包含3775个对象实例,其中包括757架飞机、390个棒球方块、159个篮球场、124座桥梁、224个港口、163个田径场、302艘船、655个储罐、524个网球场和477辆汽车,这些对象实例都是用水平边框手工标注的。

Cheng G, Zhou P, Han J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415.
链接: https://pan.baidu.com/s/1YJXr1jlwgJVVX9hl8v93lw 提取码: jpuz

8、VEDAI
VEDAI数据集用于航空图像中的多类车辆检测。它包含3640个车辆实例,包括9个类别,包括船、车、露营车、飞机、接送车、拖拉机、卡车、货车和其他类别。该数据集共包含来自 犹他州AGRC 的1210张1024×1024的航空图像,空间分辨率12.5 cm。数据集中的图像采集于2012年春季,每张图像都有四个未压缩的彩色通道,包括三个RGB彩色通道和一个近红外通道。

Razakarivony S, Jurie F. Vehicle detection in aerial imagery: A small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34: 187-203.
下载地址:https://downloads.greyc.fr/vedai/

9、HRSC2016

用于舰船检测,含1070张图片 (Google Earth) 和2976个实例,使用旋转框标注。遥感舰船公开数据集所有图像均来自六个著名的港口。分辨率从2米到0.4米不等,图像大小从300300到1500900不等,大部分比1000*600大。含有3个级别任务(分别为单类class、4类category和19类type舰船检测识别)训练,验证和测试集分别包含436个图像(包括1207个样本),181个图像(包括541个样本)和444个图像(包括1228个样本)。

链接: https://pan.baidu.com/s/1Sz2aohknDVCYrnXcnPQuaQ 提取码: 7fx1
Liu Z, Yuan L, Weng L, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]//International conference on pattern recognition applications and methods. SciTePress, 2017, 2: 324-331.

目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
### 如何下载 DIOR 数据集 DIOR 数据集是一个用于目标检测和场景识别的高分辨率光学遥感图像数据集。以下是有关如何下载最新版本的数据集以及其官方链接的信息。 #### 官方网站 可以访问 DIOR 数据集的官方网站以获取最新的数据集版本和其他相关信息[^2]。该网址提供了详细的文档说明、数据集结构以及其他资源,确保能够顺利下载并使用数据集。 - **官网地址**: [https://captain-whu.github.io/DOTA/dataset.html](https://captain-whu.github.io/DOTA/dataset.html) #### 百度网盘备份链接 如果无法通过上述官方网站直接下载,则可以通过百度网盘上的共享链接来获取数据集文件[^1]: - **链接**: [https://pan.baidu.com/s/1QPALicrLHqhblnGu_EBjlw](https://pan.baidu.com/s/1QPALicrLHqhblnGu_EBjlw) - **提取码**: jcpg 请注意,在某些情况下,可能需要注册账户或者满足特定条件才能完全访问这些资源。 另外还存在另一个备用链接供选择: - **备用链接**: [https://pan.baidu.com/s/1o4Tsx7hgh2a2O73kxJRVLg](https://pan.baidu.com/s/1o4Tsx7hgh2a2O73kxJRVLg) - **提取码**: yvi1 对于更深入的研究需求, 可能还需要联系作者或加入相关社区以获得更多支持和服务[^3]. 最后提醒一下,HRRSD 是另外一个与船舶识别相关的高分辨卫星影像数据集合, 如果对此感兴趣也可以查阅相应资料[^4]. ```python import requests from bs4 import BeautifulSoup def fetch_dataset_info(url): response = requests.get(url) soup = BeautifulSoup(response.text,'html.parser') dataset_details = [] for item in soup.find_all('div',class_='dataset-item'): title = item.h3.text.strip() description = item.p.text.strip() download_link = item.a['href'] dataset_details.append({ 'title': title, 'description': description, 'download_link': download_link }) return dataset_details url = "https://example-dataset-site.com" datasets = fetch_dataset_info(url) for dset in datasets[:5]: # Display first five entries as example. print(f"{dset['title']}: {dset['description']} ({dset['download_link']})") ``` 此脚本展示了一个简单的网络爬虫程序片段,它可以从指定URL抓取前五个数据集条目的基本信息及其下载链接作为例子演示用途。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

碧寒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值