Tensorflow2.0基础-笔记- 逻辑回归

import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

data=pd.read_csv('D:\JupyterFile\DataSet\credit-a.csv',header=None)  #输入数据集
data.head()                                                          #输出数据集前5行数据
data.iloc[:,-1].value_counts()                    #提取最后一行的所有数据,并计算每个类别的个数

x=data.iloc[:,:-1]                                #将特征赋给x,将标签赋给y
y=data.iloc[:,-1].replace(-1,0) 
                                #需要将标签变成{0,1},所以将-1转成0,因为sigmoid取值为(0,1)

model=tf.keras.Sequential()
model.add(tf.keras.layers.Dense(4,input_shape=(15,),activation='relu'))
model.add(tf.keras.layers.Dense(4,activation='relu'))
model.add(tf.keras.layers.Dense(1,activation='sigmoid'))
model.summary()
                               #2个隐藏层,输入特征为15维。最后一层用sigmoid。
model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['acc'])
                               #损失函数使用二元的交叉熵
history=model.fit(x,y,epochs=100)
history.history.keys()         #查看history中的关键字
plt.plot(history.epoch, history.history.get('loss'))  #绘图,x轴为epochs的次数,y轴为loss值
plt.plot(history.epoch, history.history.get('acc'))   # x轴为epochs的次数,y轴为acc值即精度

运行环境:windows10+miniconda的jupyter notebook

数据集:

链接:里面的credit-a.csv 提取码:5zdn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二流子学程序

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值