Knowledge Graph Contrastive Learning for Recommendation(论文笔记)

模型流程 :

1.Relation-aware Knowledge Aggregation

        这一部分讲解下面两种模型,获取entity和item的第一阶段(first-stage)的表示向量。

1.1 Knowledge Aggregation with Relation Heterogeneity

        讲解本文使用的获取item在网络结构上表示向量的方法。采用类GAT的GNN方式。

1.2 Semantic Representation Enhancement

      讲解采用TransE模型获取节点(item,entity),边(relation)的初始特征。当然,relation的特征向量不重要。

2.Knowledge Graph Augmentation

        这部分讲解如何利用图增强技术获取两个增强图(称为Views)

2.1 Augmentation on Knowledge Graph Structures

表示原来的图 。表示两个增强图 。

是掩码矩阵。通过掩码矩阵和原始邻接矩阵的哈达玛积,得到增强图。

 2.2 Agreement between Augmented Structural Views

        定义 i 节点的知识图结构一致性Ci。如果一个item的结构一致性得分较高,则它对拓扑信息的变化不太敏感。即Ci值越大,表明这个节点在网络上更加稳定,更不易受到图扰动的影响。反之亦然。Ci值的获取公式如上,fk函数表示的是1.1获取item节点特征的方式。

 3 Knowledge-Guided Contrastive Learning

         利用无监督的图对比学习获取节点向量。

3.1 Interaction Graph Augmentation Mechanism

        这部分讲解本文两个增强图是怎么来的。

        利用item的知识图结构一致性Ci来指导数据增强。结构一致性得分较高的item将涉及较少的噪音,并有助于用户真实兴趣的建模。item的Ci分数表征item对user的影响程度,具体用exp(Ci)度量。归一化成p’。 是为了缓解低价值效应。

 表示 i和u之间的dropout概率。这个dropout概率和上面那个掩码矩阵(伯努利分布)共同决定两个增强图。pa,up都是超参。生成增强图的公式如下:

3.3 Knowledge-aware Co-Contrastive Learning

        这部分讲,设置无监督的目标函数。

         顺便讲解了上诉采用的图增强技术有区别于传统的图图技术SGL,GraphCL。通过从item语义和user行为模式的角度干扰图结构。

采用lightGCN作为两个增强图的encoder。 

 

采用InfoNCE作为损失函数1。

另外损失函数2为Bayesian personalized ranking:

总损失函数为:

总结:

文章条例清晰,逻辑清楚。但是文章整体主题不够突出。文章用了很大一部分描述两个增强图的获取。与传统Augmentation不同的是,文章采用计算item的结构一致性Ci来设计网络边的dropout率。希望通过这种方式减少网络扰动对整体表示向量的影响。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二流子学程序

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值