Heterogeneous Graph Contrastive Learning for Recommendation
论文:https://arxiv.org/abs/2303.00995
源码:https://github.com/HKUDS/HGCL
摘要
图神经网络(GNN)已成为推荐系统中对图结构数据进行建模的强大工具。 然而,现实生活中的推荐场景通常涉及异构关系(例如,社交感知的用户影响力、知识感知的项目依赖性),其中包含丰富的信息来增强用户偏好学习。 在本文中,我们研究了异构图增强关系学习的推荐问题。 最近,对比自监督学习在推荐领域取得了成功。 鉴于此,我们提出了一种异构图对比学习HGCL,它能够将异构关系语义纳入用户-项目交互模型中,并通过不同视图之间的对比学习增强知识转移。 然而,异构辅助信息对交互的影响可能因用户和项目而异。 为了推进这个想法,我们通过元网络增强异构图对比学习,以允许具有自适应对比增强的个性化知识转换器。
1 INTRODUCTION
在现实世界的推荐系统中,异构关系信息无处不在,例如用户之间的社交网络连接以及具有语义相关性的知识感知项目依赖关系。 在本文中,我们解决了将异构辅助信息合并到协同过滤中以增强推荐系统的挑战。 受到 GNN 在各种推荐任务中成功的启发,研究人员尝试设计异构图神经网络,将异构关系的丰富语义嵌入到潜在表示中。 然而,大多数现有研究的表示能力往往受到稀疏训练标签的限制。 换句话说,当前的异构图神经网络是需要标签数据的学习模型,因此可能无法生成具有稀疏交互标签的高质量用户/项目嵌入来用于推荐器的模型优化[15, 29]。
对比自监督学习,作为一种有前景的表示技术而出现,通过未标记数据本身的数据增强来解决数据稀疏问题。 通过将对比学习与图神经网络相结合,图对比学习(GCL)已成为一种有效的解决方案,可以在图结构上缺乏足够的观察到的标签[38]的情况下增强学习表示的鲁棒性。 GCL 的总体思想是研究从两个图对比表示视图编码的嵌入之间的对齐情况。 在基于 GCL 的自监督中,正对比样本的表示之间的一致性将被最大化,而负对的嵌入之间的距离将被推开。 受此启发,我们将 GCL 的优势