【问答】华莱士公式应用在cos函数的注意事项

华莱士公式主要用于计算关于正弦函数的幂次积分,对于余弦函数的积分则需要另外的方法。一种常见的方法是利用积分换元法结合部分积分法来求解。

假设我们要计算 ∫ 0 π / 2 cos ⁡ n x   d x \int_0^{\pi/2} \cos^n x \, dx 0π/2cosnxdx,其中 n n n 是一个正整数。我们可以进行如下的推导和计算:

首先,利用余弦函数的平方和公式 cos ⁡ 2 x = 1 − sin ⁡ 2 x \cos^2 x = 1 - \sin^2 x cos2x=1sin2x,可以将余弦函数的幂次用正弦函数表示。于是,我们有:

∫ 0 π / 2 cos ⁡ n x   d x = ∫ 0 π / 2 ( sin ⁡ 2 x ) ( n / 2 )   d x \int_0^{\pi/2} \cos^n x \, dx = \int_0^{\pi/2} (\sin^2 x)^{(n/2)} \, dx 0π/2cosnxdx=0π/2(sin2x)(n/2)dx

然后,我们可以引入一个新的变量 t = sin ⁡ x t = \sin x t=sinx,从而完成积分换元。在这种情况下, d x = d t / cos ⁡ x dx = dt / \cos x dx=dt/cosx,并且当 x = 0 x = 0 x=0 时, t = 0 t = 0 t=0,当 x = π / 2 x = \pi/2 x=π/2 时, t = 1 t = 1 t=1。因此,原积分可以重写为:

∫ 0 1 t n / 2   d t 1 − t 2 \int_0^{1} t^{n/2} \, \frac{dt}{\sqrt{1 - t^2}} 01tn/21t2 dt

接下来,我们可以应用部分积分法来解决这个积分。通过适当选取 u u u d v dv dv 并应用积分表达式:

∫ u   d v = u v − ∫ v   d u \int u \, dv = uv - \int v \, du udv=uvvdu

我们可以逐步地将原积分化简为更容易计算的形式。最终,通过计算相应的积分,就能得到关于余弦函数的幂次积分的结果。

总的来说,虽然华莱士公式适用于正弦函数的积分,但是对于余弦函数的积分,我们需要采用不同的方法来处理。

  • 19
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值