多元函数积分思路合集

[曲线积分笔记]第一类曲线积分
[微积分笔记]第二类曲线/面积分总结

积分方法意义/提示
平面第二型曲线积分化为定积分 ∮ L → ∫ a b \oint_L \to \int_a^b Lab
平面第二型曲线积分格林公式 ∮ L → ∬ D \oint_L \to \iint_D LD化为对平面区域的二重积分
空间第二型曲线积分斯托克斯公式 ∮ L → ∬ ∑ \oint_L \to \iint_{\sum} L化为第一型曲面积分
第二型曲面积分化为二重积分注意根据方向添加正负号
第二型曲面积分高斯公式 ∯ ∑ → ∭ Ω \oiint_{\sum} \to \iiint_{\Omega} Ω化为三重积分处理

知乎 - 积分关系定理(格林公式、高斯公式、斯托克斯公式)

三重积分

主要方法

这个时候就不得不推荐一位知乎博主的文章了,真的是条理清晰(看完就懂)
知乎 - 【高等数学】二重积分化累次积分方法
知乎 - 【高等数学】三重积分的计算原理

其中他讲的投影法即“先一后二”法,截面法即“先二后一”法(定限截面法)

解三重积分共四大方法:

  • 先一后二法
  • 先二后一法(实际上是先求截面质量,然后再累积)
  • 柱面坐标系下求解
  • 球面坐标系下求解

球面坐标系下的三重积分

看这个CSDN - 球面坐标系下的三重积分

曲线积分

在这里插入图片描述
(上图来自B站@考研竞赛凯哥)

第一型曲线积分

直接计算

第一型曲面积分和定积分比较来看,前者是 d s ds ds,而后者是 d x dx dx或者 d y dy dy,这就是其中的区别,也表明第一型曲线积分可以转化为定积分处理。把握好在不同坐标系下 d s ds ds化为常见的定积分的方法计即可。

如对于 d s = ( d x ) 2 + ( d y ) 2 = 1 + y x ′ 2 d x ds=\sqrt{(dx)^2+(dy)^2}=\sqrt{1+y_x'^2}dx ds=(dx)2+(dy)2 =1+yx′2 dx,那么显然有如下转换:

∫ Γ f ( x , y ) d s = ∫ a b f ( x , y ( x ) ) 1 + y x 2 d x \int_\Gamma f(x,y)ds=\int_a^bf(x,y(x))\sqrt{1+y_x^2}dx Γf(x,y)ds=abf(x,y(x))1+yx2 dx

即一投二代三计算:投积分上下限、把 y ( x ) y(x) y(x)代替 y y y,然后计算定积分。其中 a a a b b b是因为曲线可以表示为 y = y ( x )  , a ≤ x ≤ b y=y(x)\text{ ,}a\le x\le b y=y(x) ,axb

若是参数方程, d s = [ x ′ ( t ) ] ′ + [ y ′ ( t ) ] 2 d t ds=\sqrt{[x'(t)]'+[y'(t)]^2}dt ds=[x(t)]+[y(t)]2 dt,那么 a a a b b b来自于 a ≤ t ≤ b a\le t\le b atb

第二型曲线积分

直接计算

∫ L P ( x , y ) d x + Q ( x , y ) d y \int_LP(x,y)dx+Q(x,y)dy LP(x,y)dx+Q(x,y)dy
上述积分的积分曲线 L L L定义式是 = y ( x ) =y(x) =y(x)且起始点 x = a x=a x=a,终点 x = b x=b x=b

I = ∫ a b [ P ( x , y ) ⋅ 1 + Q ( x , y ) y ′ ( x ) ] d x I=\int_a^b[P(x,y)·1+Q(x,y)y'(x)]dx I=ab[P(x,y)1+Q(x,y)y(x)]dx

若是参数方程则是
I = ∫ a b [ P ( x ( t ) , y ( t ) ) x ′ ( t ) + Q ( x ( t ) , y ( t ) ) y ′ ( t ) ] d t I=\int_a^b[P(x(t),y(t))x'(t)+Q(x(t),y(t))y'(t)]dt I=ab[P(x(t),y(t))x(t)+Q(x(t),y(t))y(t)]dt

其中 t = a t=a t=a是起点, t = b t=b t=b是终点

格林公式

把曲线积分转化成二重积分,二重积分的区域 D D D就是曲线围成的区域

kaysen学长:格林公式史上最通俗最透彻讲解

一些习题过程:微信公众号文章 - 格林公式

积分区域与路径无关:

∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ

其他细节

结合曲线定义式替换简化

∮ L x d y − y d x x 2 + y 2    L : x 2 + y 2 = a 2 \oint_L\frac{xdy-ydx}{x^2+y^2}\text{ }\text{ }L:x^2+y^2=a^2 Lx2+y2xdyydx  L:x2+y2=a2

先把分母化为 a 2 a^2 a2提出去后再格林公式
1 a 2 ∮ L x d y − y d x = 1 a 2 ∬ D [ 1 − ( − 1 ) ] d x d y = 2 a 2 ∬ D 1 d σ = 2 π \frac1{a^2}\oint_Lxdy-ydx=\frac1{a^2}\iint_D[1-(-1)]dxdy=\frac2{a^2}\iint_D1d\sigma=2\pi a21Lxdyydx=a21D[1(1)]dxdy=a22D1dσ=2π

格林公式:挖去法

B站 - 5分钟搞懂格林公式的挖洞问题

在这里插入图片描述
因为原先 D D D内部存在偏导不连续的点,所以才要使用挖洞法,将之排除在外

在这里插入图片描述
挖去的未必是圆,为了方便(消去分母,可以是椭圆或者其他的)

格林公式:补线法

使用补线法补得线一般比较简单。并且如若补的曲线是 y = 0 y=0 y=0,就直接可以把后面所有 y y y d y dy dy全换成0,然后发现整个式子为0或者去掉了一部分

曲面积分

B站 - 五分钟带你理清第二型曲面积分的解题思路

在这里插入图片描述

封闭曲面是 ∯ \oiint ,而不封闭曲面是 ∬ \iint

第一型曲面积分

典型形式 ∬ Σ f ( x , y , z ) d S \iint_{\Sigma}f(x,y,z)dS Σf(x,y,z)dS

化为二重积分:一投二代三计算

y O z yOz yOz面则变成了 f ( x ( y , z ) , y , z ) 1 + ( z y ′ ) 2 + ( z x ′ ) 2 d z d y f(x(y,z),y,z)\sqrt{1+(z'_y)^2+(z'_x)^2}dzdy f(x(y,z),y,z)1+(zy)2+(zx)2 dzdy

看最后积分变量,不 d d d谁就把谁的偏导写成 1 1 1

轮换对称性

有一个特例:
∬ Σ f ( x ) d s = ∬ Σ f ( y ) d s = ∬ Σ f ( z ) d s = 1 3 [ ∬ Σ f ( x ) d s + ∬ Σ f ( y ) d s + ∬ Σ f ( z ) d s ] \iint_\Sigma f(x)ds=\iint_\Sigma f(y)ds=\iint_\Sigma f(z)ds=\frac13[\iint_\Sigma f(x)ds+\iint_\Sigma f(y)ds+\iint_\Sigma f(z)ds] Σf(x)ds=Σf(y)ds=Σf(z)ds=31[Σf(x)ds+Σf(y)ds+Σf(z)ds]

第二型曲面积分

典型形式 ∬ Σ P ( x , y , z ) d y d z + Q ( x , y , z ) d x d z + R ( x , y , z ) d x d y \iint_\Sigma P(x,y,z)dydz+Q(x,y,z)dxdz+R(x,y,z)dxdy ΣP(x,y,z)dydz+Q(x,y,z)dxdz+R(x,y,z)dxdy

知乎 - 第二型曲面积分解法小整合

化为二重积分:一投二代三计算

本质是向量场的通量:单位区域流量*面积

在这里插入图片描述 ∬ Σ v → ⋅ n → d s \iint _\Sigma\overrightarrow {v}·\overrightarrow {n}ds Σv n ds
含有方向余弦的转化为标准形式:
因为 d s = 1 + z x 2 + z y 2 d x d y ∬ Σ ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d s → ∬ Σ ( P ( − z x ) + Q ( − z y ) + R ) d x d y \text{因为}ds=\sqrt{1+z_x^2+z_y^2}dxdy\\ \text{}\\ \iint_\Sigma(P\cos\alpha + Q\cos\beta + R\cos\gamma)ds\xrightarrow {}\iint_\Sigma(P(-z_x) + Q(-z_y) + R)dxdy 因为ds=1+zx2+zy2 dxdyΣ(Pcosα+Qcosβ+Rcosγ)ds Σ(P(zx)+Q(zy)+R)dxdy

(图截取自下方链接)

B站 - 哔站最精炼第二类曲面积分,几分钟搞懂

  • 投是投影出区域 D D D,要保证任何两点的投影点不能重合
  • 代是把 z = z ( x , y ) z=z(x,y) z=z(x,y)带入
  • 计算是计算二重积分(面朝向与 z z z轴成锐角则为正,否则积分号前加负号,其他投影情况同理)

最终搞的就是计算下式
± ∬ D f ( x , y , z ( x , y ) ) d x d y \pm\iint_Df(x,y,z(x,y))dxdy ±Df(x,y,z(x,y))dxdy

高斯公式

下图图源:高斯公式,简洁,干货,绝不浪费时间

在这里插入图片描述

  • 注意方向,朝内则加负号

其他细节

高斯公式:挖去法

散度若是有无定义/无法求偏导的点,就得挖去
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值