【机器学习微积分】10 多元函数的极值(下):牛顿法与向量微分

本文主要介绍了多元函数极值问题中,牛顿法的应用及其原理。首先回顾了向量微分的基础知识,包括函数的分类和向量函数的求导。接着详细阐述了牛顿法的原理和公式推导,指出牛顿法通过利用一阶导和二阶导来确定搜索方向,从而提高求解效率。最后讨论了算法的代码实现和牛顿法的局限性,提到了拟牛顿法和共轭梯度法作为替代方案。
摘要由CSDN通过智能技术生成

这一讲里,我们进入到多元函数求极值的最后一部分,即牛顿法的内容中。

在前面的两讲内容里,我们所介绍的梯度下降法和最速下降法都只用到了目标函数的一阶导数(也就是梯度)来确定每一次迭代的搜索方向,因此也可以被称作为是一阶方法。

而另一种算法的优化思路是这样的,在迭代方法中引入高阶导数,其迭代效率可能会优于最速下降法,而牛顿法就是其中的典型代表,他的核心是同时使用一阶导(梯度)和二阶导(黑塞矩阵)来确定搜索方向,效率上要优于一阶的方法。

1.向量微分基础

1.1.函数的分类

在介绍牛顿法的具体算法之前,我们先来介绍一下向量微分的基础知识,这些内容在算法的实现中将会用到。

其实从多元函数的内容开始,我们对于函数的认识就应该深了一层,这里我们趁此机会把函数的种类全部梳理一遍。

我们看看三种函数,标量函数、向量函数和矩阵函数:

对于标量函数 f f <

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石 溪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值