【论文解读】Adversarial Feature Hallucination Networks for Few-Shot Learning(对抗特征,小样本学习)

1. 介绍


论文地址:Adversarial Feature Hallucination Networks for Few-Shot Learning.

参考代码:https://github.com/KandariSrinivas/Adversarial-Feature-Hallucination-Networks-for-Few-Shot-Learning

针对问题:小样本学习、数据多样性和可判别性

        数据扩充对小样本有效,然而,这些模型不能很好地保证合成数据的可辨别性和多样性,因此常常产生不希望的结果。

文章贡献:

  • 提出了对抗性特征幻觉网络(AFHN),它基于条件Wasserstein生成性对抗性网络(cWGAN),并在少数标记样本的条件下幻觉多样性和辨别性特征;
  • 在AFHN中引入了两种新的正则化子,即分类正则化子和反折叠正则化子,以分别提高合成特征的可分辨性和多样性; 
  • 对三个常见基准数据集的比较结果证实了AFHN相对于现有基于数据增强的FSL方法和其他最先进的方法的优越性。

2. 方法

        本文提出一种基于数据增强的小样本学习算法(AFHN),利用生成对抗网络(GAN)实现数据集的扩充。数据增强的方法被认为可以增强类内样本方差的多样化,从而实现更加清晰地分类界限。先前的数据增强方法主要包含两类:一类是通过在基础数据集上学习一种变换映射,并将其直接应用到新的数据集上,得到映射后的合成图像用于数据扩充,这一类方法会破坏合成图像的区分能力(因为合成图像很粗糙,与原始类别并不相似);另一类方法是根据特定的任务生成对应的合成图像,这类方法保证了合成图像的区分能力,但特定的任务约束使得合成的图像容易陷入一种特定的模式,从而丧失了多样性(在GAN中这种情况称之为Mode Collapse,就是指生成的图像之间太过于相似,不具备多样性)。本文利用conditional Wasserstein Gener- ative Adversarial Networks ,cWGAN(与普通的GAN相比,cWGAN就是通过改进目标函数,进而提高训练稳定性的一个变种,此处不再详细介绍)生成样本,并通过增加分类正则项(classification regularizer)和 “反陷入”正则项(anti-collapse regularizer),解决了生成样本缺少区分能力和多样性的问题。本文提出算法的处理流程如下图:

         首先支持集图像和查询集图像经过特征提取网络 F得到对应的特征向量,支持集对应的特征向量为 s(如果有多个样本则取平均值),从[0,1]的均匀分布中采样得到两个随机变量 1然后将特征向量 s 和  z1,z2输入到cWGAN的生成器 G中,得到合成的向量s1,s2,过程如下:

 然后将s1,s2和原始的s一起输入到判别器D中,并计算GAN的损失:
 

         简单地用上述GAN损失训练模型并不能保证生成的特征非常适合学习判别分类器,因为它忽略了不同类之间的类间竞争信息。此外,由于条件特征向量是高维和结构化的,因此生成器很可能忽略噪声向量,并且所有合成特征在特征空间中塌陷到单个或几个点,即所谓的模式塌陷问题。为了避免这些问题,我们在目标函数中附加了一个分类正则化项和一个抗崩溃正则化项,旨在鼓励合成特征的多样性和可辨别性。

Classification regularizer:

        由于我们的训练目标是在查询集QT中对井样本进行分类,因此在给定支持集ST的情况下,我们通过要求合成特征作为真实特征很好地服务于分类任务,从而鼓励对合成特征的可辨别性。定义了一个非参数FSL分类器,采用余弦相似性,计算查询图像(xq,yq)∈ QT与合成特征为同一类的可能性:

 然后再利用交叉熵损失函数计算分类损失,作为分类正则项 L c r i ,该正则项的目的是为了增强生成样本的区分能力:

 Anti-collapse regularizer:

        众所周知,GAN模型存在臭名昭著的模式崩溃问题,特别是条件GAN,其中结构化和高维数据(例如图像)通常用作条件上下文。因此,生成器可能会忽略解释多样性的潜在噪声,而只关注条件上下文,这是不可取的。具体到我们的情况,我们的目标是增加特征空间中的少数标记样本;当发生模式坍塌时,所有合成特征可能会折叠到特征空间中的一个或几个点,无法使标记样本多样化。观察到当映射到特征空间时,潜在代码空间中距离较近的噪声向量更有可能塌陷到相同模式,我们直接惩罚两个合成特征向量的相异度与生成它们的两个噪声向量的相异度之比:

        即“反陷入”正则项则是直接对两个合成特征向量的不相似度和产生它们的两个噪声向量的不相似度的比值进行惩罚,文字表述比较复杂,我们直接看公式:

 式中,分子部分表示了两个合成特征向量之间的不相似度,而分母表示两个噪声向量之间的不相似度。s1,s2越相似,越容易坍塌,z1,z2越相似,分母就越小,相当于放大了s1,s2的相似性。该正则项的目的时为了增强生成样本的多样性。

对于生成对抗网络部分损失函数如下:

值得注意的是“反陷入”正则项 L a r 取了倒数,因此对于生成器而言是希望生成的s1 和 s2之间的不相似度越大越好 。

        对于分类器部分采用简单的分类损失函数进行训练:

训练策略:

 

 3. 实验

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值